Лекции (1170086), страница 6
Текст из файла (страница 6)
Дано: det0. Но тогда обратимость матрицы A следует из теоремы осуществовании обратной матрицы. Теорема доказана.Теорема о единственности обратной матрицы. Обратная матрица единственна.Доказательство. Докажем «от противного». Пусть это не так, и пусть B=A и C=A ,. Из определения обратной матрицы следует: ⋅ B=B ⋅ A=E, ⋅ C=C ⋅ A=E.Тогда из ассоциативности умножения матриц и свойств единичной матрицы следует:⋅ ⋅ C=E ⋅ C=C, т.е. B=C.Выполним некоторые вычисления: B=B ⋅ E=B ⋅ ⋅доказывает утверждение теоремы.Противоречие с предположениемАналогичными вычислениями можно доказать следующие свойства обратной матрицы:1.⋅=B ⋅.2.=A.Действительно:⋅⋅ ⋅ =B ⋅⋅ ⋅ B=B ⋅⋅ ⋅ B=B ⋅совершенно аналогично, ⋅ ⋅⋅=E, т.е.⋅⋅ E=⋅⋅⋅⋅ A=⋅⋅ B=B⋅⋅ B=E, и.⋅ A=E ⋅ A=A.Нетрудно также доказать, что матрица, обратная к диагональной матрице —диагональная, обратная к треугольной — треугольная, обратная к симметричнойматрице — симметрична.
Докажите эти утверждения самостоятельно.Ниже приведен порядок операций при вычислении обратной матрицы................11...A=...............11...⇒i1...n11j...ij...njПример................i1...n1...............1i...ii...ni1n...in...,detA=Δnn1n...⇒ транспонируем ⇒in...............11......0⇒1i...nn1n11 ...... ...1⋅ 1i ...... ...1n ...1 2Вычислим0 50 0j1...ji...jn..............................j1...ji...jnni...nnn1ni...nnсоставим матрицу из алгебраических дополнений:0 65 61⋅∣1⋅∣∣ 10, 12∣ 0, 13110 2211⋅∣2 3∣0 24,221⋅∣1 3∣0 2311⋅∣2 3∣5 63,321⋅∣1 3∣0 62,1матрицу:1004102100Проверим:31061051011 2 30 5 6⋅00 0 20⋅000310351225150⋅∣1330 5∣0 00,1 2∣0 0⋅∣1 2∣0 50,5,36;50, получим обратную3103.51225151⋅∣1236,0;101040 022 0; транспонируем полученную матрицу: 0006 5разделив каждый элемент последней матрицы на detA=101043⇒...31 2 36 :detA= ∣ 0 5 6 ∣20 0 20 2n1...11 0 00 1 0.0 0 1⋅ A= 00251503103 1 2 3⋅0 5 65 0 0 2121 0 00 1 0.0 0 1Матричная запись системы линейных алгебраических уравнений.
Рассмотримсистему линейных алгебраических уравнений+a12...+a1n =b ,...+a2n =b ,21 +a22...............................................+amn =b .m1 +am2111121Обозначим: A= ...m11222...m2............1n2n... , B= ... , X= ... ,mnA — матрица системы, B — правая часть, X — матрица-столбец неизвестных.Тогда:......+a1n1n11 +a12......+a2n21222n21 +a22⋅ X= ...тогда и только тогда,... ... ... ⋅ ............+amnm1m2 ...mnm1 +am2когда для элементов матрицы X справедливы равенства рассмотренной системы. Т.е.система эквивалентна матричному уравнению A·X = B, в том смысле, что если числа,x ,...,x являются решением рассмотренной системы, то соответствующая матрицаX является решением матричного уравнения; и наоборот, если матрица X являетсярешением матричного уравнения, то ее элементы ,x ,...,x являются решениемрассмотренной системы.Матричные уравнения.
Рассмотрим матричное уравнение A·X = B.Если m=n и матрица A обратима, то⋅ =A ⋅ B,A⋅⋅⋅ X=E ⋅ X=X, ⇒ X=A ⋅ ,т.е. получили выражение для решения системы матричного уравненияA·X = B. Ясно, что по этой формуле можно вычислить решение системы n линейныхалгебраических уравнений относительно n неизвестных (см.
запись системы вматричной форме).Аналогично, если соответствующие матрицы обратимы, имеем:X·A = B, X = B·A-1,A·X·B = C, X = A-1·C· B-1,A·X+B = 0, A·X = - B, X = - A-1·B.1112Пример.1 2 30 5 60 0 21 2 3X= 0 5 60 0 211 2 31Решим матричное уравнение 0 5 6 ⋅ X= 2:0 0 2310⋅ A= 00⋅01 0 00 1 0.0 0 11⋅23110см.предыдущийпример 01 2 3Проверим: 0 5 6 ⋅0 0 201001⋅2310.12.3Формулы Крамера. Рассмотрим систему n линейных алгебраических уравненийотносительно n неизвестных...+a1n =b ,11 +a12...+a2n =b ,21 +a22...............................................+ann =b .n1 +an2...............11...Обозначим: Δ=detA= ∣i1...n11j...ij...nj...............1n...in...∣— определитель матрицы системы, иnn...11 ...1n...
... ... ... ......∣ i1 ...in ∣ — определитель матрицы, полученной из матрицы... ... ... ... ......n1 ...nnсистемы заменой j-го столбца столбцом правых частей.Если определитель матрицы системы отличен от нуля, Δ=det0, то решениесистемы...+a1n =b ,11 +a12+a...+a2n =b ,2122...............................................+ann =b .n1 +an2,...,x0.определяется равенствами:,xДокажем это утверждение.
ПустьΔ=detОбозначим X= ...11...⋅ X=i1...n1...............1j...ij...nj..................и покажем, что...⋅1k=1n...⋅...⋅⋅2k⋅1k=...nnnkk=1kk=2kk=.⋅ X=B.Вычислим1kin,...,x⋅...1nkk=.⋅Вычислим определитель разложением по первому столбцу, определитель — повторому, …,— по n-му:......111n... ... ... ...
......∣ i1 ...⋅ pj , поскольку определитель отличается отin ∣ ∑p=... ... ... ... ......n1 ...nnтолько j-м столбцом.Тогда111k ⋅1k12k1⋅2k...nkk=1ik⋅⋅pk2k⋅pknk⋅pk...k=...1⋅pkp=1⋅⋅p=⋅1kk=pkp=⋅p=,k=⋅ Δ=b ,ikk=⋅ik1⋅⋅0pk0при.p=k=1⋅p=Т.е.⋅k=поскольку1p=⋅...nk⋅p=p=1⋅1pkp=k=11⋅k=k=k=⋅ik⋅pkk=⋅ X=BприX=....Формулы Крамера доказаны.Замечание. Нетрудно, показать, что выражения X=A⋅ и X=...— две формызаписи одного и того же равенства.Действительно,j111...1⋅ B=⋅ 1idet...1n...............j1...ji...jn...............j=n1...ni......⋅...1...⋅jij=nn...1 ...⋅..........jnj=2xПример. Решим по формулам Крамера систему:3x6x5x2x1,2,3.1 2 311 2A= 0 5 6, B= 2, Δ=detA= ∣ 0 50 0 230 01 2 31 1∣2 5 6∣7,∣0 23 0 20 371410,x101 2 3Проверим: 0 5 6 ⋅0 0 21036 ∣ 10 0,231 2 114,∣0 5 2∣6∣20 0 3715 3,x.510 215,12.3Элементарные преобразования матрицПомимо операций с матрицами определены операции с элементами матриц, операции состолбцами и строками матрицы — так называемые элементарные преобразования матриц.Определение.
Элементарными преобразованиями матрицы называют следующие операции:1. перестановка любых двух строк (столбцов) матрицы;2. умножение любой строки (столбца) на произвольное, отличное от нуля, число;3. сложение любой строки (столбца) с другой строкой (столбцом), умноженной(умноженным) на произвольное, отличное от нуля, число.4.
к элементарным преобразованиям иногда относят и операцию транспонированияматрицы.Приведение матрицы к ступенчатому виду Гауссовым исключениемУтверждение. Любую прямоугольную матрицу можно с помощью элементарныхпреобразований привести к ступенчатой форме.Это утверждение на лекции доказано.12Пример. Приведем к ступенчатой форме матрицу 11321234213 11 105⇒12343 63 242 86 281 2342⋅⇒ ,∣0339∣1⋅⇒ ,0339∣1 ⋅⇒ , ⇒⇒0 0003⋅⇒ ,∣0 06 12∣2⋅⇒ ,0 12 12 36211268343 105.343 246 281⇒ ,1 230 110 1⋅ ⇒ ,∣⇒30 12⇔ ,∣0 010 0⋅⇒ ,∣6101 ⋅⇒ ,∣01⇒0⋅ ⇒ ,∣1200⇒10⇔ ,∣0⇒∣1 ⋅⇒ ,000∣⋅3111210433⇒3620210100310110210000311000430⇒320432.000Алгоритм приведения матрицы к ступенчатой форме с помощью элементарныхпреобразований называют Гауссовым исключением или методом Гаусса.Линейная алгебра и аналитическая геометрияКраткий конспект лекций.Лекции 7-8Пространство арифметических векторов RnОпределение.
Арифметическим вектором называется упорядоченная совокупность n чисел.Обозначается ̅, ,..., , числа , ,..., называются компонентами арифметическоговектора.Для арифметических векторов определены линейные операции — сложение арифметическихвекторов и умножение вектора на число: ̅, ,..., ,, ,..., , ̅,,...,, ̅,,...,,для любых ̅ и и любого числаОпределение.
Множество арифметических векторов, для которых определены операциисложения и умножения на число называется пространством арифметических векторов Rn.Вектор ̅ 0,0,..., 0называется нулевым вектором, а векторпротивоположным вектором для вектора ̅ .̅,—,...,Для любых ̅ , , ̅из Rn и любых чисел α , β справедливо:1.̅̅ , сложение коммутативно;2.̅̅̅̅, сложение ассоциативно;̅3.̅̅,̅,4.̅̅̅̅, умножение на число дистрибутивно относительно сложения элементов;5.6.̅αβ ̅ , умножение на число ассоциативно;7.̅̅̅ , умножение вектора на число дистрибутивно относительно сложениячисел.8.1⋅ ̅̅.Примерами пространства арифметических векторов являются пространства геометрическихвекторов на плоскости, записанных в координатной форме.Линейная зависимость и линейная независимость в RnОпределение.
Линейной комбинацией векторов ̅ , ̅ ,..., ̅ называется выражение̅ , где коэффициенты линейной комбинации , ,..., — некоторые числа.̅̅...Определение. Говорят, что вектор ̅ пространства Rn линейно выражается через векторы̅ , ̅ ,..., ̅ ∈ , если его можно представить в виде линейной комбинации этих элементов̅ , ̅ ,..., ̅ , т.е. представить в виде ̅̅̅...̅ .Определение. Система ̅ , ̅ ,..., ̅ векторов из Rn называется линейно независимой если из̅ следует равенство нулю всех коэффициентов̅̅...̅0,0,...,0,∑0.Иными словами, линейная комбинация векторов равна нулю тогда и только тогда, когда всекоэффициенты линейной комбинации равны нулю.Определение.
Система векторов, которая не является линейно зависимой, называется линейнонезависимой.Иными словами, существуют такие коэффициенты линейной комбинации̅.0, что̅̅...̅равные нулю ∑,,...,, не всеИли: линейная комбинация векторов может обратиться в нуль, хотя не все коэффициенты линейнойкомбинации равны нулю.Пример. Исследуем на линейную зависимость векторы̅1,0,0 , ̅Составим линейную комбинацию векторов и приравняем ее нулю:̅̅⋅ 1,0,0, ,̅⋅ 0,1,00,0,0 ⇔⋅ 0,0,10,, 0,0, 1,00,0.0,0,0,1,0 ,0,0,1 из R3.Т.е. линейная комбинация равна нулю тогда и только тогда, когда все ее коэффициентынулевые — векторы ,̅ ,̅ линейно независимы.Пример.
Исследуем на линейную зависимость систему векторов ,̅ ̅ ,̅ ̅ и̅ з R3.Составим линейную комбинацию векторов и приравняем ее нулю:̅̅̅̅̅⋅ 1,0,0,⋅ 1,1,0⋅ 1,1,0̅ 0,0,0 ⇔,00, тогда̅̅̅, 0,00,̅ 0⋅ ̅,,0.1⋅ ̅,,0Пусть,1,1,̅̅1 ⋅ ̅например,̅ , т.е. существует нулевая линейная комбинация с отличными от нуля̅̅коэффициентами — векторы ,̅ ̅ ,̅ ̅ —̅ линейно зависимы.̅̅̅Свойства линейно зависимых и линейно независимых систем функций1.Любая система векторов, содержащая нулевой вектор линейно зависима.2.Любая система векторов, содержащая пару взаимно противоположных векторов —линейно зависима.3.Любая система векторов, содержащая два равные вектора — линейно зависима.4.Любая подсистема линейно независимой системы векторов — линейно независима.5.Если некоторая подсистема системы векторов линейно зависима, то и вся система— линейно зависима.Докажем первое из этих утверждений: любая система векторов, содержащая нулевойвектор линейно зависима.