Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости (1161662), страница 55
Текст из файла (страница 55)
Если стенка будет перемещаться с переменной скоростью, зависящей явно от вреиени: Ь 2) движение неогглниченной плоскости в вязкой жидкости 3!3 где и (у, Г)=-1: ! егм э)п —— 2 (,, ьт Па (2.23) В частности, сила вязкости на стенке при переменной скорости дви- жения самон стенки будет представляться э виде Правая часть (2.2ч) указывает на то, что сила вязкости на стенке в момент Г зависит от всего предшествующего состояния движения этой стенки. Обоаначим через г)1 массу единицы площади, а через В(Г) внешнюю силу, приходящуюся также на единицу площади стенки и зависящую только от времени, Составляя дифференциальное уравнение движения стенки с учетом силы Р и силы вязкости (2.24), найдем: Таким образом, для определения ускоренна движущейся стенки мы получили интегральное уравнение Вольтерра с ядром, зависящим от разности à — -,.
Такого вида интегральные уравнения решаются с помощью того же преобразования Лапласа. Умножая левую и правую части (2,25) на до бесконечности и вводя обозна. проводя интегрирование от нуля чения [/т е- г(7)г(Г = —, Р ' о получим: е-РгР(Г) г(Г =- — —, (2.26) Р о 3 Предположим, что функция (7'(Г) такова, что в последнем слагаемом (2.27) возможна перемена порядка интегрирования.
Областью интегрирования (2.27) служит бесконечный треугольник выше биссектрисы (рис. 80). При первом интегрировании по переменному -. в (2.27) мы должны идти вдоль отрезка Ог, при втором интегрировании 314 нввстлновившиеся движвнив вязкой жидкости (гл. ~х отрезок ОГ должен перемещаться вверх от начала координат до бесконечности. После перемены порядка интегрирования мы должны при первом интегрировании по переменному Г перемещаться по прямой, параллельной оси Л от т до бесконечности, а при втором интегрировании эту прямую необходимо перемещать вправо от начала координат до бесконечности.
Следовательно, будем иметь: а е я'пг ~ =а(т= ~ и'(х)тт ~ е-ш= о о а Полагая затем г — с =х, о((.=г(х и учитывая (2.26), получим: е-Рог(Г ! ' = ~ с-Рои'(т)г(т ( е ™л= = — В/ ! г й(о)ла г, г л и" — .! й о о о и(о) р. и' — +— Р ро — = Л4 о н 1 34)г; )гр (2.
30) Рассмотрим тот случай, когда внешняя сила Г отсутствует и когда стенка после получения некоторой начальной скорости и(0) Таким образом, соотношение (2.27) представится в виде р,а '~' р р )~'ор Отсюда для преобразования Лапласа от ускорения будем иметь; Р" ни(О) — — (2. 28) Р и М .~-— Р, Применяя равенство (2.6), получим: е Раи'Ш.=- = и' — и(0), (2,29) Р о сг йр Р с. ВО. нс. где — — преобразование Лапласа от ско- Р рости. Приравнивая правые части (2.28) и (2.29), получим следующее выражение для преобразования Лапласа от переменной скорости движущейся стенки: Ф 3) 315 ДИФФУЭИЯ ВИХРЕВОГО СЛОЙ (/(Г) — (У(0) еич [1 2 ~ е Рг(Р~, )г (2.31) где (2.
32) М Тгт В правой части (2.31) находится функция, которая широно используется в теории вероятностей. Вводя для этой функции обозначение () (х) = = ) ' е-рг13, 2 (2.33) будем иметь и(г) .Еч В (0) О,— — 1 В(в. У'г) Полагая, например, Д).'Г =- 0,01, (2,34) по таблицам, приводимым в курсе теории вероятностей, получим: (4(Д )г Г) = 0,01128, 2 е "" = 1,1283, г е то) = 0,9888 Таким образом, скорость движущейся плоскости уменьшается примеРно на 1е)е по пРошествии пРомежУтка вРемени, опРеделЯемого нз соотношенйя й 3.
Диффузия вихревого слои Если плоская стенка начнат перемещаться с постоянной скоростью (т', то скорость прямолинейного движения частиц вязкой несжимаемои жидкости будет определяться по формуле(2.20). А теперь изменим постановку задачи. Пусть до момента времени г = 0 часгицы жидкости и стенка имели постоянную скорость с( в отрицательном движется только под действием тормозящей силы вязкости. Для определения по изображению (2.30) оригинала мы можем воспользоваться, как указывалось выше, справочными таблицами или провести те же рассуждения и вычисления, которые были проведены выше при введении в рассмотрение замкнутого контура АВСЕ)ЕГА.
В ревультате для оригинала скорости движения стенки можно получить выражение нзхстлнозиешзяся движение вязкои жидкости !гл. > *>и и .—.= () (1 — = ) е> ш з!и —; — - ! — (>' == — — „) с. "" з)п = †. (!!. 1) о Выражение з правой части (3.1) будет обращаться в нуль при у = О, ! ) 0 и при ! = О, у= 0 и будет равно — (> при у = сю. Лля всех промежуточных значений у от нуля !р до бесконечности скорость и будет отрицательной, т. е. при 0(у(со и(у, !)(О. Распространим это решение (3.1) и для отрицательных значений у. Тогда будем иметь: при 0)у) — -сю и(у, г)>0, Рис. 8! и при этом для значения у = — сю скорость и (у, !) будет раана (/. Следовательно, выражение (3.1) для всего пространства будет означать то, что для начального момента времени частицы жидкости, расположенные выше оси х(у ) О), имели скорость — (/, а частицы, расположенные ниже осн л, имели скорость + (>', и сама ось к представляла собой скачок скоростей (рис. 31).
Таким образом, функиия (3.1) выражает собой рассасыаание начального скачка скоростей благодаря вязкости жидкости. Найдем теперь по скорости (3.1) значение вихря. В рассматриваемом случае вихрь будет представляться в виде ч> = — -=- ~ е-'*'соя =ля. 1> ! ' ау я)гч ТГ> (3.2) Для вычисления интеграла (3,2) поступаем следующим образом. Положим — б. =(> и обозначим интеграл через Л т. е, р ч l= ~ е-"н соя(>иг(а, е (3.3) направлении оси х. В момент ! = 0 стенка у = 0 была внезапно остановлена, Требуется установить, как будет происходить торно>кение дан>кения всей жидкости, Легко проверить, что решение этой новой задачи мы получим, если из правой части (2.20) вычтем скорость (), т, е. если положим: ;11 2 ЛНФФУЗНЯ ВИХРКВОГО СЛОЯ Дифференцируя этот интеграл по параметру Ь, получим: лу — — е "' яп Ьв а4и.
лв = ч Выполняя интегрирование по частям, будем иметь: lе е -"и я(ЙЬа аФа = ~ з(п Ья с((— (:2Г~ 1 ь 21 = — — е — "" з1п Ьа + — е-"ч соя Ьа г(я. 21 Й Первое слагаемое в правой части при подстановке верхнего и нижнего предела обращается в нуль, а второе слагаемое представляет в собой первоначальный интеграл с множителем —.
Таким образом, 2г получим следующее дифференциальное уравнение для ./: Л2 Ь вЂ” = — — у. ЛЬ 21 После разделения переменных и интегрирования будем иметь: (п У = — — ЬЯ+ (п С, я 41 Отсюда ь У= Се (3.4) Полагая параметр Ь равным нулю и используя значение интеграла Пуассона, получим: (3.5) Подставляя значение С из (3.5) в (3.4) и значение интеграла (3.4) в (3.2), наплел~ конечное выражение для вихря скорости м(у, г)=, е 2 )',чу Полученное выражение (З.б) показывает, что для начального момента вихрь всюду был равен нулю, кроме оси х. На оси же х (у=О) вихрь в начальный момент был равен бесконечности. На этом основании функцию (З.б) мовкно называть функцией источники вихревого слон, расположенного на прямой у = О и начавщего свой действие с момента с = О.
Волн же источник вихревого слоя будет расположен не на прямой у=-О, а на прямой уГ О и начнат свой 3!8 нягстьновнвшввся лвиженив вязкой жидкости (гл, (2 действие не с момента Г = О, а с момента Г ="., то функция источника вихревого слоя будет представляться в виде се — ч(* е«(у, Г; т(, т) = е 4 (4-«( (3.7) 2 )Г«в(г — «) Правая часть (3.6) обращается в нуль при значении у, отличном от нуля, дважды: при Г=О и при с=сю. Следовательно, по твои« реме Ролла в проме(кутке от с=О до с=сю на каждой прямой у = с интенсивность ( вихря будет достигать своего экстремального значения и гра! фик изменения вихря на этой (~-- прямой со временем будет прис( е мерно представляться в виде Рнс.
82. кривой, показанной на рис. 82. Положение точки максимума на этой кривой мы определим, если вайдам проивводную от (3.6) по времени дг 2У«в 2 4 и приравпяем ес нулю. В результате получим следующее выражение для времени Гж наступления максимума завихрения на ланной прямой, параллельной оси х: — (3.8) Если мы зафиксируем момент времени г и будем рассматривать интенсивность вихря (3.6) как функцию только от переменного у, то получим график этой функции, изображенный на рис. 83. Этот график показывает, что на прямой Рпс. %. у = 0 интенсивность вихря будет максимальной для любого момента времени, но на основании (3.7) можно видеть, что с течением времени этот максимум будет убывать. Рассмотренное нами явление рассасывания вихревого слоя, имеющего место на оси х, и связанное с ним явление передачи вихря от одного слоя к другому называются диффузией вихревого слоя.
На множитель (/ в выражении (3.7) можно смотреть как на .мощность исглочнина вихревого слоя. Если вихревые слои будут заполнять целую полосу от у=а до у=о, то, вводя в рассмотрение 9 4) движвиия между нвогглниченными плйлллельными станками 319 мощность вихРЯ 4(г)), пРиходЯщУюсЯ на единицУ длины ть мы можем получить функцию источника от злемента длины полосы вихря в виде 4 2 )Тгвг Проводя интегрирование, получим функцию от непрерывного распре- деления источников вихревых слова г ге- гг м(у, Г)= — г7(г))е г" дг). 2угггг Е О (3.9) Можно ввести также в рассмотрение и непрерывную последовательность источников вихревого слон во времени от момента ". = 0 до момента ".
= Т. Для етого случая функция вихря равна т Р* м(у, Г) = ~ гу(г) е г'" 2угве г По функции источника вихревого слоя (3.7) можно образовать функцию диполя вихревого слоя с помощью дифференцирования (3.7) либо по параметру ;, либо по параметру г) г!г-чР (у, Г) =- (7 е чзэс-ч)г1 — (У В)г-1, (3.11) 4 У гв (г — г)г ~ 2г(г — г)1 ге-ая м(у, Г) = — „— — — — — е ' гг — ч.