main (1160446), страница 10
Текст из файла (страница 10)
Тогда1 () = 1 ( − 0 )( − 1 )( − 2 ),′1 () = 1 (( − 1 )( − 2 ) + ( − 0 )( − 2 ) + ( − 0 )( − 1 )).Для нахождения 1 воспользуемся условием ′1 (1 ) = 1:′1 (1 ) = 1 (1 − 0 )(1 − 2 ) = 1.Получаем выражение для 1 :1 =1.(1 − 0 )(1 − 2 )Тогда 1 () принимает вид1 () =( − 0 )( − 1 )( − 2 ).(1 − 0 )(1 − 2 )Из условий 1 (0 ) = 0, 1 (2 ) = 0 следует, что коэффициент 1 () обращается в нольв точках 0 и 2 . Будем искать его в виде1 () = ( − 0 )( − 2 )( + ),где , ∈ R.Так как 1 (1 ) = 1, то получаем, что1 (1 ) = (1 − 0 )(1 − 2 )(1 + ) = 1.Перепишем равенство относительно (1 + ):1 + =1.(1 − 0 )(1 − 2 )(3)Для нахождения коэффициента вычислим производную ′1 () в точке 1 :′1 () = ( − 0 )( − 2 ) + ( + )(2 − 0 − 2 ).Значит,0 = ′1 (1 ) = (1 − 0 )(1 − 2 ) + (1 + )(21 − 0 − 2 ).Подставив вместо (1 + ) равенство (3), получим представление для коэффициента :=−(21 − 0 − 2 ).(1 − 0 )2 (1 − 2 )2Выразим из равенства (3) коэффициент :=11(21 − 0 − 2 )− 1 =+ 1.(1 − 0 )(1 − 2 )(1 − 0 )(1 − 2 )(1 − 0 )2 (1 − 2 )258Тогда коэффициент 1 () принимает вид:)︂(︂(21 − 0 − 2 )(21 − 0 − 2 )1.1 () = (−0 )(−2 ) −++ 1(1 − 0 )2 (1 − 2 )2(1 − 0 )(1 − 2 )(1 − 0 )2 (1 − 2 )2Упростив последнее выражение, получим( − 0 )( − 2 )1 () =(1 − 0 )(1 − 2 )(︂( − 1 )(21 − 0 − 2 )1−(1 − 0 )(1 − 2 ))︂.Итак, мы нашли все необходимые коэффициенты для построения полинома Эрмита 3 ().Замечание.
Заметим, что из-за появления кратных узлов сложность вычисления коэффициентов полинома Эрмита значительно возросла. Если для интерполяционных полиномов в форме Лагранжа и в форме Ньютона существуют единые формулы для вычислениявсех коэффициентов, то для полинома Эрмита необходимо вычислять коэффициенты дляразных узлов по-разному.Оценка погрешности для 3 ()Зафиксируем ∈ (0 , 2 ) ⊂ R: ̸= 1 . Введем функцию ():() = () − 3 () − (), ∈ [0 , 2 ],где () = ( − 0 )( − 1 )2 ( − 2 ), а — некая зависящая от постоянная.Выберем константу так, чтобы () = 0. Тогда () − 3 () − () = 0, () − 3 ().()Введем погрешность для полинома Эрмита 3 ():=3 () = () − 3 ().Пусть для любого ∈ [0 , 2 ] существует (4) (). Функция () имеет не менее четырехнулей: три — в узлах 0 , 1 , 2 , а четвертый — в точке (мы подобрали коэффициент таким образом, чтобы был корнем).
Воспользуемся теоремой Ролля. Так как () имеетне менее четырех нулей, то ′ () имеет не менее трех нулей на отрезке [0 , 2 ]. Так как узел1 является кратным узлом для интерполяционного полинома Эрмита 3 (), то точка 1является нулем ′ (): ′ (1 ) = 0. Следовательно, первая производная имеет не меньшечетырех нулей. Вторая производная имеет не менее трех нулей, а третья — не менее двух.Следовательно, существует точка такая, что⃒ () − 3 ()⃒ (4) () = 0 = ( (4) () − 4! )⃒= (4) () − 4!.()=В результате получим следующее выражение для погрешности: (4) ()().4!⃒⃒⃒ (4) ⃒⃒ ()⃒ .3 () = () − 3 () =Обозначим4 =sup∈[0 ,2 ]Отсюда приходим к оценке|3 ()| 6где () = ( − 0 )( − 1 )2 ( − 2 ).4|()|,4!§17.
Интерполирование с кратными узлами. Полином Эрмита59В общем случае погрешность интерполяционного полинома Эрмита степени ∈ N для функции () имеет вид (см. [1] c. 137)Замечание 1. () = (+1) ()( − 0 )0 ( − 1 )1 . . . ( − ) ,( + 1)!0 + 1 + . . . + = + 1,где { }=0 — разбиение области определения функции (), ∈ N, и функция () должнабыть ( + 1) раз дифференцируема на своей области определения.Интерполяционный полином Эрмита дает более гладкое приближение,чем ранее рассмотренные интерполяционные полиномы в форме Лагранжа и в форме Ньютона.Замечание 2.Задача. Показать, что интерполяционный полином Эрмита 3 () можно получить изинтерполяционного полинома Лагранжа 3 () с помощью предельного перехода.Пусть 0 , 1 , 2 — узловые точки функции () на отрезке [0 , 2 ].
Добавимфиктивный узел 3 ∈ [0 , 2 ], 3 ̸= , = 0, 2. Построим полином в форме Лагранжа поэтим четырем узлам:Решение.( − 0 )( − 1 )( − 2 )( − 0 )( − 2 )( − 3 ) (3 ) + (1 )+(3 − 0 )(3 − 1 )(3 − 2 )(1 − 0 )(1 − 2 )(1 − 3 )( − 1 )( − 2 )( − 3 )( − 0 )( − 1 )( − 3 ) (0 ) + (2 ).+(0 − 1 )(0 − 2 )(0 − 3 )(2 − 0 )(2 − 1 )(2 − 3 )3 () =(4)Покажем, что lim 3 () = 3 ().3 →1При стремлении 3 к 1 , коэффициент при (0 ) в формуле (4) примет вид:( − 1 )2 ( − 2 )= 0 ().(0 − 1 )2 (0 − 2 )Аналогично получим, что выражение коэффициента при (2 ) совпадает с коэффициентом2 () из интерполяционного полинома Эрмита (2) при 3 → 1 .Рассмотрим два оставшихся коэффициента: обозначим через (3 ) первые два слагаемых суммы (4). (3 ) можно представить в виде(3 ),3 − 1( − 0 )( − 1 )( − 2 )( − 0 )( − 2 )( − 3 )(3 ) = (3 ) − (1 ).(3 − 0 )(3 − 2 )(1 − 0 )(1 − 2 )(3 ) =При переходе к пределу функции (3 ) при 3 → 1 возникает неопределенность вида 0/0.Для вычисления предела воспользуемся правилом Лопиталя и получим: ′ (3 )= lim ′ (3 ).3 →1 (3 − 1 )′3 →1lim (3 ) = lim3 →1Так как ′ (3 ) уже не содержит неопределенности при 3 → 1 , тоlim ′ (3 ) = ′ (1 ).3 →1После проведения всех необходимых вычислений получим, что(︂)︂( − 1 )(21 − 0 − 2 )( − 0 )( − 1 )( − 2 ) ′( − 0 )( − 2 )′ (1 ) = (1 )+1− (1 ).(1 − 0 )(1 − 2 )(1 − 0 )(1 − 2 )(1 − 0 )(1 − 2 )Видно, что при ′ (1 ) и (1 ) мы получили выражения, в точности совпадающие с коэффициентами 1 () и 1 () из формулы для интерполяционного полинома Эрмита (2).60§18Использование интерполяционного полинома Эрмита3 () для оценки погрешности квадратурной формулы СимпсонаРассмотрим задачу приближенного вычисления определенного интеграла∫︁=(1) ()от интегрируемой по Риману на отрезке [, ] ⊂ R функции ().Построим разбиение отрезка [, ]: 6 0 < 1 < .
. . < 6 ,где ∈ N,так, чтобы выполнялось условие − −1 = ℎ, = 1, ,где ℎ — некоторая константа, задающая шаг разбиения, причем ℎ = −. Отрезки [−1 , ], = 1, , называются частичными сегментами.Будем искать интеграл в виде суммы интегралов по всем частичным сегментам:= ∫︁∑︁=1 (2) ().−1Для вычисления интеграла на всем отрезке достаточно построить приближение интегралана -м частичном сегменте [−1 , ] для = 1, .Формулы приближенного вычисления определенного интеграла называютквадратурными формулами.Замечание.Запишем формулу Симпсона для -го частичного сегмента функции (), = 1, :∫︁ () ≈)︁ℎ (︁ (−1 ) + 4 (− 1 ) + ( ) ,26(3)−1где − 1 =2 +−12— полуцелая точка.Квадратурная формула Симпсона (3) является точной для любого полинома степени не выше трех.Утверждение.Доказательство.сегмента, = 1, .ПустьПриведем доказательство данного утверждения для -го частичного () = 0 + 1 + 2 2 + 3 3 = 2 () + 3 3 ,3 ̸= 0.Квадратурная формула Симпсона (3) точна для 2 (), так как по построению задает приближение функций параболами, то есть полиномами второй степени.
Покажем, что фор∫︀ 3мула Симпсона точна для функции 3 . Для этого вычислим интеграл по формуле−1§18. Оценка погрешности формулы Симпсона при помощи полинома Эрмита61Ньютона-Лейбница:∫︁(2 − 2−1 )(2 + 2−1 )4 − 4−1= =443 ≈−1=−1 )(2( − −1 )( +4+2−1 )(4)ℎ( + −1 )(2 + 2−1 )4=и по квадратурной формуле Симпсона:∫︁ℎℎ3 = (3−1 + 43− 1 + 3 ) =266(︃(−1 + )(2−1 − −1 + 2 ) + 4(︂ + −12)︂3 )︃=−1ℎ=6(︂)︂( + −1 )(2 + 2 −1 + 2−1 )22(−1 + )(−1 − −1 + ) +=2)︂(︂ 22−1 − 2 −1 + 22 + 2 + 2 −1 + 2−1ℎ== ( + −1 )62=ℎℎ( + −1 )3(2−1 + 2 ) = ( + −1 )(2 + 2−1 ).124Полученные выражения для интеграла от функции 3 совпадают, значит, формула Симпсона точна для полиномов третьей степени.Перейдем к оценке погрешности квадратурной формулы Симпсона (3), для чего воспользуемся интерполяционным полиномом Эрмита 3 (), рассмотренным в предыдущемпараграфе.Если для оценки погрешности квадратурной формулы Симпсона мы воспользуемся выражением для погрешности интерполяционного полинома Лагранжа второй степени, тополучим сильно завышенную оценку.
Правильная оценка получается при использованииполинома Эрмита 3 ().Зафиксируем узлы −1 , − 1 и и построим по этим узлам интерполяционный по2лином Эрмита 3, () для функции (). Ранее в §5 было доказано, что такой полиномсуществует, единственен и удовлетворяет следующим условиям:3, (−1 ) = (−1 ),3, (− 1 ) = (− 1 ),223, ( ) = ( ),′3,(− 1 ) = ′ (− 1 ).22Запишем погрешность для полинома 3, ():3, () = (4) ()( − −1 )( − − 1 )2 ( − ),24! ∈ [−1 , ].(5)Представим исходную функцию () в виде () = 3, () + 3, () .
Тогда∫︁∫︁ () =−1∫︁3, () +−1−13, ().(6)62Так как формула Симпсона (3) точна для полиномов третьей степени, то мы можем заме∫︀нить интеграл3, () на соответствующую ему правую часть формулы (3):−1∫︁3, () =)︁ℎ (︁3, (−1 ) + 43, (− 1 ) + 3, ( ) .26−1Тогда∫︁∫︁)︁ℎ (︁ () =3, (−1 ) + 43, (− 1 ) + 3, ( ) +3, () =26−1−1=)︁ℎ (︁ (−1 ) + 4 (− 1 ) + ( ) + Ψ ( ).26Следовательно,∫︁ () −Ψ ( ) =)︁ℎ (︁ (−1 ) + 4 (− 1 ) + ( ) .26(7)−1∫︀Таким образом мы получаем, что Ψ ( ) =3, () задает погрешность формулы−1Симпсона (3) на -м частичном сегменте.Оценим по модулю погрешность формулы Симпсона на -м частичном сегменте исходяиз формулы (5).∫︁∫︁|3, ()| 6|Ψ ( )| 64,( − −1 )( − − 1 )2 ( − ),24!−1−14, =sup∈[−1 , ]Задача.⃒⃒⃒ (4) ⃒()⃒⃒.Показать, что∫︁( − −1 )( − − 1 )2 ( − ) =2ℎ5.120−1Произведем замену в подынтегральном выражении: = −1 + ℎ, ∈ [0, 1].(︀)︀2Тогда = ℎ и − −1 = ℎ, − = ℎ(1 − ), ( − − 1 )2 = ℎ2 − 12 , и мы получаем,2чтоРешение.∫︁( − −1 )( − − 1 )2 ( − ) =2−15∫︁1=ℎ0(︂)︂)︂∫︁1 (︂1 25 21ℎ5534 −2 − − + =(1 − ) = ℎ.2441200§19.
Наилучшее среднеквадратичное приближение функции63Таким образом, погрешность формулы Симпсона (3) на -м частичном сегменте имеетпятый порядок точности:4, ℎ5|Ψ ( )| 6,(8)4! 120Оценим погрешность приближения интеграла (1) на всем отрезке [, ], учитывая представление этого интеграла в виде суммы ингералов по всем частичным сегментам (2) ивоспользовавшись формулой Симпсона (3):⃒ ⃒ ⃒⃒⃒∫︁⃒ ⃒ ⃒ ∑︁(︁)︁∑︁⃒⃒ ⃒∑︁ℎ⃒⃒⃒|Ψ( )| = ⃒ () − (−1 ) + 4 (− 1 ) + ( ) ⃒ = ⃒Ψ ( )⃒ 6|Ψ ( )| .2⃒6⃒⃒ ⃒ =1=1=1Мы выбирали разбиение отрезка [, ] так, что ℎ = − , поэтому с учетом оценки (8)получим, что(︂ )︂44 ( − )ℎ,|Ψ( )| 62180⃒⃒⃒⃒4 = sup ⃒ (4) ()⃒.∈[0 , ]Следовательно, квадратурная формула Симпсона на всем отрезке [, ] имеет четвертыйпорядок точности.§19Наилучшее среднеквадратичное приближение функцииРассмотрим гильбертово пространство 2 — линейное пространство вещественных функций, интегрируемых с квадратом (см.