Численные методы. Ионкин (2012) (v1.1) (косяки есть) (1160435), страница 13
Текст из файла (страница 13)
Ëèïøèöà ïî âòîðîìó àðãóìåíòó.|f (t, u) − f (t, v)| ≤ L|u − v|,Òîãäà|φ(1)n | = |f (tn , yn ) − f (tn , Un )| ≤ L|yn − Un | = L|zn ||φ(2)n | = |f (tn + aτ, yn + aτ f (tn , yn )) − f (tn + aτ, Un + aτ f (tn , Un ))| ≤≤ L|yn + aτ f (tn , yn ) − Un − aτ f (tn , Un )| ≤≤ L(|yn − Un | + aτ |f (tn , yn ) − f (tn , yn )|)≤ L(|zn | + aτ L|zn |)Òîãäà:(2)zn+1 = zn + τ ψn + (1 − σ)τ φ(1)n + στ φn ;|zn+1 | ≤ τ |ψn | + (1 − σ)τ L|zn | + στ L(|zn | + aτ L|zn |) =115= τ L|zn | + τ L(σ + σaτ L)|zn | + τ |ψn | + |zn |Ïóñòü12 , òîãäà èìååìa<|zn+1 | ≤ τ |ψn | + (1 + τ L + 0.5τ 2 L2 )|zn ||zn+1 | ≤ eτ L |zn | + τ |φn |;eτ L = ρ > 0|zn+1 | ≤ ρ|zn | + τ |ψn |- ïðèìåíèì ýòî n ðàç ðåêêóðåíòíîn|zn+1 | ≤ ρ |z0 | +nXτ |ψj |;ò.ê.|z0 |=0j=0|zn+1 | ≤nXτ |ψj | = max |ψj |0≤j≤nj=0nXτ ρn−j =j=0= tn+1 max |ψj |ρn = tn+1 eτ nL kψkc0≤j≤nÎêîí÷àòåëüíî ïðèõîäèì ê îöåíêåãäåM|zn+1 | ≤ M kψkc ,- ïîëîæèòåëüíàÿ êîíñòàíòà, íå çàâèñÿùàÿ îòßñíî, ÷òîτlim |zn | → 0n→∞Çíà÷èò èìååò ìåñòî ñõîäèìîñòü ìåòîäà.Íàïîìíèì, ÷òî ñõåìà "ïðåäèêòîð-êîððåêòîð":1)σ = 1;a = 0.5;ψn = O(τ 2 );|zn+1 | ≤ M τ 2Ñèììåòðè÷íàÿ ðàçíîñòíàÿ ñõåìà:2)σ = 0.5;Åñëèσ = 0,a = 1;aψn = O(τ 2 );- ëþáîå: òîãäàψn = O(τ );Ýòî ñõåìà Ýéëåðà.116|zn+1 | ≤ M τ 2|zn+1 | ≤ M τ 3.
Ìíîãîøàãîâûå ðàçíîñòíûå ìåòîäû òàêèõ ìåòîäàõ äëÿ âû÷èñëåíèé íàïðåäûäóùèõmtn -îìøàãå èñïîëüçóþòñÿ äàííûå ñøàãîâ.Îïðåäåëåíèå:Ëèíåéíûìm-øàãîâûìðàçíîñòíûì ìåòîäîì ðåøåíèÿ çàäà÷è (1) íàçûâàåòñÿìåòîä, çàïèñàííûé óðàâíåíèåì:mXakk=0τyn−k =mXbk fn−k(5.10)k=0yn−k = y(tn − kτ )fn−k = f (tn − kτ, yn−k )Çäåñüak , bk −k = 0, 1, ...., m,äåéñòâèòåëüíûå ÷èñëàïðè÷åì:a0 6= 0bm 6= 0τ >0Åñëèb0 = 0,ìåòîä íàçûâàåòñÿ ÿâíûì, åñëèy0 , y1 , ...., ym−1b 6= 0- íåÿâíûì.- ò.í. "ðàçãîííûé ýòàï".Íà ýòîì ýòàïå ýòè çíà÷åíèÿ îáû÷íî ïîëó÷àþòñÿ äðóãèì ìåòîäîì - íàïðèìåðìåòîäîì Ðóíãå-Êóòòû.
Áóäåì ñ÷èòàòü, ÷òî îíè óæå çàäàíû.Ïîïðîáóåì ñðàâíèòü ýòîò ìåòîä ñ ìåòîäîì Ðóíãå-Êóòòû:Íåäîñòàòêè:- íàëè÷èå ðàçãîííîãî ýòàïà- íóæíî ïîìíèòü íàynyn−1 , ..., yn−møàãå - øàãèÄîñòîèíñòâà:- êîìïàêòíàÿ, ïðîñòàÿ ôîðìóëà- ëåãêî ìîæíî ïîëó÷èòü áîëåå âûñîêèé ïîðÿäîê àïïðîêñèìàöèè(Ïîçæå îòìåòèì, ÷òî âûñøèé ïîðÿäîêp = 2m)Óñëîâèå íîðìèðîâêè:mXbk = 1k=0117(5.11)Ïåðåõîäèì ê âû÷èñëåíèþ îöåíêè ïîãðåøíîñòè àïïðîêñèìàöèè.Ïðåäïîëàãàåì, ÷òî èñõîäíàÿ ôóíêöèÿ îáëàäàåò íóæíîé ãëàäêîñòüþ.ψn = −mXakτk=0ÎöåíèìmXUn−k +bk f (tn − kτ, Un−k )(5.12)k=0ψn .Un−k = U (tn − kτ )Íàïîìíèì, ÷òîÐàçëîæèì â ðÿä Òåéëîðà â îêðåñòíîñòèUn−k =pX(−kτ )ll!l=0tn :U (l) (tn ) + O(τ p+1 )Òåïåðü ðàçëîæèì ïðàâóþ ÷àñòü:0Un−kf (tn − kτ, Un−k ) ==p−1X(−kτ )ll!l=0Ïîäñòàâëÿåì â ôîðìóëó äëÿU (l+1) (tn ) + O(τ p )ψn :pp−1mmXXX(−kτ )lak X (−kτ )l (l)U (tn ) +bkU (tn ) + O(τ p )ψn = −τl!l!l=0lk=0k=0l + 1 = l0Ñìåùàåì èíäåêñû:ψn = −p XmXak (−kτ )ll=0 k=0+p XmXl=1 k=0=−mXakk=0+τmXk=0={l=0mXτl!U (l) (tn )+l(−kτ )l−1 (l)U (tn ) + O(τ p ) =bkl(l − 1)!U (tn ) +pX(−l=1mXak (−kτ )lk=0τl!U (l) +(−kτ )l−1 (l)lbkU (tn )) + O(τ p ) =l!ak = 0- óñëîâèå àïïðîêñèìàöèè }k=0118=(5.13)=−mXakk=0τU (tn ) +pX(−l=1mXmX(−kτ )l−1k=0l!k l−1 (kak + lbk ) = 0;U (l) (tn ) · (kak + lbk )) + O(τ p )l = 1, 2, ...., p(5.14)k=0a0 , ...., amb0 , ....., bmp + 2 óðàâíåíèé.×òîáû ñèñòåìà ðàçðåøàëàñü, íàäî ÷òîáû p + 2 ≤ 2m + 2Òî åñòü, íàäî ÷òîáû âûïîëíÿëîñü: p ≤ 2mÇíà÷èò ìåòîä ìîæåò èìåòü íàèâûñøèé ïîðÿäîê - 2m äëÿ äàííîãî m.Çíà÷èò ó íàñ2m + 2óðàâíåíèÿ èç ýòîé ñèñòåìû è åù¼Íàïîìíèì, ÷òîzn+1 − zn(2)= ψn + φ(1)n + φnτφn - ïîãðàíè÷íàÿ àïïðîêñèìàöèÿ íà ðåøåíèè.(1)φn = (1 − σ)(f (tn , yn ) − f (tn , Un ))(2)φn = σ[(f (tn + aτ, yn + aτ f (tn , yn )) − f (tn + aτ, Un + aτ f (tn , Un ))]Ïîëàãàÿ, ÷òî ôóíêöèÿLf (t, u)óäîâëåòâîðÿåò óñëîâèþ Ëèïøèöà ñ êîíñòàíòîéïî 2-îìó àðãóìåíòó, ïîëó÷èì:(1)|φn | ≤ (1 − σ)L|yn − Un | = (1 − σ)L|zn |Ïóñòü0 ≤ σ ≤ 1;- ïî Ëèïøèöóa≥0|φ(2)n | ≤ σL|yn + aτ f (tn , yn ) − Un − aτ f (tn , Un )| ≤≤ σL(|yn − Un | + aτ L|yn − Un |) = σL(1 + aτ L)|zn |(2)22 nφ(1)n | + |φn | ≤ L|zn | − σL|zn | + σL|zn | + σaτ L |zn | = L|zn | + σaτ L |z |Çäåñü äåëàåì äîïóùåíèå, ÷òîσa ≤ 0.5Òîãäà119(2)2|φ(1)n | + |φn | ≤ (L + 0.5τ L )|zn |À òåïåðü, ò.ê.(1)(2)zn+1 = zn + τ ψn + τ (φn + φn ),- ïîëó÷àåì îöåíêó:|zn+1 | ≤ (1 + τ L + 0.5τ 2 L2 )|zn | + τ |ψn |Ïðè÷åì ìîæíî îòìåòèòü, ÷òî(1 + τ L + 0.5τ 2 L2 ) ≤ eτ L = ρÒîãäà ïîëó÷åíà ñèñòåìàmXak = 0(5.15)k=0mXk l−1 (kak + lbk ) = 0l = 1, ...., p(5.16)k=0mXbk = 1(5.17)k=0mXkak = −k=0mXmXbk = −1(5.18)k=0k l−1 (kak + lbk ) = 0l = 2, ...., pk=0b0 = 1 −mXa0 = −bk ;k=1Âñåãî òîãäà èìååòñÿp2makk=1óðàâíåíèé. êà÷åñòâå íåèçâåñòíûõ:Òî åñòü èìååìmXa1 , ...., am , b1 , ...., bmíåèçâåñòíûõÄëÿ òîãî, ÷òîáû ñèñòåìà íå áûëà ïåðåîïðåäåëåííîé, ïîëó÷àåìmXakk=0Åñëèb0 = 0,òî ìîæíî ïðèτyn−k =k=0mXbk fn−kk=0âûäåëèòü ñëàãàåìîå:120p ≤ 2mmXakakbk fn−k − yn−k )yn =ττk=1Çäåñü íàì èçâåñòíû êîìïîíåíòû ïðàâîé ÷àñòè.
Òîãäà ÿâíûé ðàçíîñòíûéìåòîä âû÷èñëÿåòñÿ ïðîñòî ÷åðåç ïðàâóþ ÷àñòü.Åñëèb0 6= 0,yn ;fn = f (tn , yn ) -òîãäà ìåòîä - íåÿâíûé, ò.ê. ñïðàâà åñòüaÒîãäà: âíîâü âûäåëÿåì k ynτ− b0 fn ;çäåñüíåèçâåñòíî.Îñòàëüíîå - â ïðàâóþ ÷àñòü:mXakak(bk fn−k − yn−k )yn − b0 fn = F (yn−1 , yn−2 , ...., yn−m ) =ττ(5.19)k=1Ïîëó÷èëè íåÿâíîå íåëèíåéíîå óðàâíåíèå. Òàêîå óðàâíåíèå ðåøàåòñÿ ìåòîäîìÍüþòîíà, â êà÷åñòâå íà÷àëüíîãî ïðèáëèæåíèÿ âûáèðàþò çíà÷åíèÿ â ïðåäûäóùèåìîìåíò âðåìåíè.Ìåòîä Àäàìñà:myn − yn−1 X=bk fn−kτk=0a1 = −1;a0 = 1;ak = 0;k≥2 4.
Ïîíÿòèå óñòîé÷èâîñòè ðàçíîñòíîãî ìåòîäàÓðàâíåíèå:yn+1 = qynÏîêàæåì, ÷òî åñëè|q| > 1,n = 0, 1, .... y0 − çàäàíî(5.20)òî ïðîöåññ - íåóñòîé÷èâ.Î÷åâèäíî, ÷òî íà êàæäîì øàãå íàõîäèì ïðèáëèæåííûå çíà÷åíèÿ. Íàïðèìåðïóñòü çäåñü âëèÿåò îêðóãëåíèå çíà÷åíèé â ïðîöåññå âû÷èñëåíèé -ỹn = yn + δnÒîãäàỹn = qyn + qδn = yn+1 + δn+1121|δn |δn+1 = qδn ,çíà÷èò, åñëè|q| > 1,òî ïîãðåøíîñòü âû÷èñëåíèéδn+1- âîçðàñòàåòíåîãðàíè÷åííî.
Ò.å. íåò óñòîé÷èâîñòè.Ïðè|q| ≤ 1,δn+1- íå âîçðàñòàåò, è ìåòîä óñòîé÷èâ.Ôàêòè÷åñêè áóäåò âûïîëíÿòüñÿ îöåíêà|yn+1 ≤ |yn |Ðàññìîòðèì âñå âûøåñêàçàííîå íà ìîäåëüíîé çàäà÷å:U 0 (t) + λU (t) = 0;t > 0;(5.21)λ∈R λ>0U (0) = U0 ;Àíàëèòè÷åñêè ïîñ÷èòàåì:U (t) = U0 e−λtÏðè λ > 0 - áûñòðîóáûâàåò ýêñïîíåíòà, âñ¼ â ïîðÿäêå.Ðåøàåì çàäà÷ó ÷èñëåííî:ßâíàÿ ñõåìà Ýéëåðà:dU= f (t, U (t))dtt>0(5.22)Ñõåìà Ýéëåðà äëÿ (2) âûãëÿäèò òàê:yn − yn−1= f (tn , yn )τyn − yn−1+ λyn−1 = 0τyn+1 = (1 − τ λ)yn ;Åñëè|q| ≤ 1τïîÿâèëîñüq = 1 − τλ- òîãäà ìåòîä óñòîé÷èâ.−1 ≤ 1 − τ λ ≤ 1;Åñëèy0 = U0τ λ ≤ 2;⇒0≤τ ≤2λ(5.23)âûéäåò èç ýòîãî èíòåðâàëà - óñòîé÷èâîñòè íåò.
5.23 - óñëîâèå óñòîé÷è-âîñòè ÿâíîé ñõåì Ýéëåðà.Åñëè âçÿòüλáîëüøèì - ýêñïîíåíòà î÷åíü áûñòðî óáûâàåò, íî ïàðàäîêñ - íàäîáðàòü î÷åíü ìàëåíüêèé øàã.122Íåÿâíàÿ ñõåìà Ýéëåðà:yn+1 − yn= f (tn+1 , yn+1 )τyn+1 − yn+ λyn+1 = 0τyn+1 + τ λyn+1 = ynyn = (1 + τ λ)yn+1yn+1 =q=11 + τλ1yn1 + τλ0 < q < 1;|q| < 1Ýòîò ìåòîä óæå óñòîé÷èâ íåçàâèñèìî îò âûáîðà øàãàτÎáùèé m-øàãîâûé ðàçíîñòíûé ìåòîä:dU= f (t, U (t))dtt>0(5.24)U (0) = U0dU+ λU (t) = 0;dt− çàäà÷àU (0) = U0mXakk=0y0 , y1 , ...., ymτt>0mXyn−k =bk fn−k(5.25)(5.26)k=0- ñ÷èòàåì çàäàííûìè (ðàçãîííûé ýòàï);Ïîä÷åðêíåì, ÷òîak , bk- íå çàâècÿò îòτmXak( + bk λ)yn−k = 0τk=0123(5.27)Ïåðåïèøåì:mX(ak + τ bk λ)yn−k = 0(5.28)k=0Ðåøåíèå óðàâíåíèÿ 5 èùåòñÿ â âèäå:yj = q jÑîêðàùàåì íàq n−mF (q, τ ) =mX(ak + τ λbk )q m−k = 0(5.29)k=0Óðàâíåíèå 5.28 - õàðàêòåðèñòè÷åñêîå óðàâíåíèå äëÿ ðàçíîñòíûõ ñõåìÈññëåäóåì|q| < 1è|q| ≥ 1;Àíàëèòè÷åñêè - ïðàêòè÷åñêè íåâîçìîæíî.Íîτ- ìàëî, ïîëîæèì åãî ôîðìàëüíî ðàâíûì íóëþ:τ =0Ïîëó÷èì óïðîùåííîå õàðàêòåðèñòè÷åñêîå óðàâíåíèå:mXak q m−k = 0(5.30)k=0Ââîäÿ è èññëåäóÿ óñòîé÷èâîñòü - ìàòåìàòèêè èñïîëüçóþò èìåííî ýòî óðàâíåíèå.
Çäåñü íåò ïðàâîé ÷àñòè, ìû ñóäèì îá óñòîé÷èâîñòè ïî ïðîèçâîäíîé.Îïðåäåëåíèå:Ãîâîðÿò, ÷òî ðàçíîñòíàÿ ñõåìà óäîâëåòâîðÿåò óñëîâíèþ (α), åñëè âñå êîðíèõàð-êîãî óðàâíåíèÿ ëåæàò âíóòðè ëèáî íà ãðàíèöå åäèíè÷íîãî êðóãà êîìïëåêñíîéïëîñêîñòè, ïðè÷åì íà ãðàíèöå íåò êðàòíûõ êîðíåé.Ñ òî÷êè çðåíèÿ óñòîé÷èâîñòè ýòî ïîçâîëÿåò ñôîðìóëèðîâàòü ñëåäóþùóþòåîðåìó:Òåîðåìà (áåç äîê-âà):Ïóñòü ðàçíîñòíàÿ ñõåìà óäîâëåòâîðÿåò óñëîâèþ (α);|fn | ≤ L0 ≤ t ≤ T ; t - êîíå÷íîå.Òîãäà, äëÿ tn = nτ :0 ≤ tn ≤ Tè âñåõ äîñòàòî÷íî ìàëûõ τ - âûïîëíÿåòñÿ îöåíêà:Ïóñòü|zn | = |y(tn ) − U (tn )| ≤ M (nXj=mM- íå çàâèñèò îòτ124τ |ψj | + max |yi − U (ti )|)0≤i≤m−1M- ôóíêöèÿ îòLT :M = M (LT )Çàìå÷àíèå 1:Ìåòîäû Àäàìñà óäîâëåòâîðÿþò óñëîâèþ(α);myn+1 − yn Xbk fn−k ;=τy0 = U0k=0Ñâåäåì ê âèäó : ïîëó÷àåìq = 1;Çàìå÷àíèå 2:Ýòî çàìå÷àíèå êàñàåòñÿ ïîíÿòèé àáñîëþòíîé è óñëîâíîé óñòîé÷èâîñòè - ìûíå äåëàåì ðàçíèöû ìåæäó íèìè.Çàìå÷àíèå 3:m - íå÷åòíîå.(m + 1);Ïóñòüìåòîäà -Ïóñòü-mÒîãäà íàèâûñøèé ïîðÿäîê óñòîé÷èâîãî ðàçíîñòíîãî- ÷åòíîå.
Òîãäà íàèâûñøèé ïîðÿäîê óñòîé÷èâîãî ðàçíîñòíîãî ìåòîäà(m + 2)Åñëè ìåòîä ÿâíûé, òîãäàp = m;Ïðèìåð:Ðàññìîòðèì ðàçíîñòíóþ ñõåìó:yn + 4yn+1 − 5yn−22fn−1 + fn−2=6τ3(5.31)- ÿâíàÿ ñõåìà.Çàäà÷à 1:Ïîêàçàòü, ÷òî äëÿ 5.31 - ïîãðåøíîñòü àïïðîêñèìàöèè - òðåòüåãî ïîðÿäêàO(τ 3 )Ðåøåíèå:Îáîçíà÷èìψn = −un + 4un−1 − 5un−2 2fn−1 + fn−2+6τ3Óñëîâèÿ, êîòîðûì äîëæåí óäîâëåòâîðÿòü ìíîãîøàãîâûé ðàçíîñòíûé ìåòîä,äëÿ òîãî, ÷òîáû ïîãðåøíîñòü àïïðîêñèìàöèè èìåëà ïîðÿäîêb0 = 1 −mXbkk=1a0 = −mXk=1125akO(n3 ):mXak k = −1k=1mXk l−1 (ak kbk ) = 0, l = 2, 3k=1m = 2, a0 = 61 , a1 = 23 , a2 = − 65 , b0 = 0, b1 = 32 , b2 = − 133âûïîëíÿþòñÿ è ñïðàâåäëèâà îöåíêà O(n ).ÏðèóñëîâèÿÏîêàæåì, ÷òî ñõåìà íå óäîâëåòâîðÿåò óñëîâèþ (α).Ïîëó÷àåì õàð-êîå óðàâíåíèå:q 2 + 4q − 5 = 0q1 = 1;Ò.ê.|q2 | = 5 > 1,q2 = −5çíà÷èò - íåóñòîé÷èâûé ìåòîä. 5.
Ƽñòêèå ñèñòåìû ÎÄÓÊðóã çàäà÷, ñâÿçàííûõ ñ æ¼ñòêèìè ñèñòåìàìè, øèðîêèé, è â ñîâðåìåííîéïðàêòèêå èäåò ïðîöåññ èçó÷åíèÿ ýòèõ ÷èñëåííûõ àëãîðèòìîâ. Íî åñòü è çàâåðøåííûå ðåçóëüòàòû, î êîòîðûõ è ïîãîâîðèì â ýòîì ïàðàãðàôå.Äëÿ òîãî ÷òîáû ïîíÿòü ñìûñë æ¼ñòêèõ ñèñòåì, íà÷íåì ðàññìîòðåíèå ìîäåëüíîéçàäà÷è,êîòîðàÿáóäåòüêàçàòüñÿäîâîëüíîèñêóññòâåííîé,íîäà¼òâîçìîæíîñòü ïîíèìàíèÿ æ¼ñòêîñòè ñèñòåì ÎÄÓ.Ðàññìîòðèì ñèñòåìó èç äâóõ íåçàâèñèìûõ ôóíêöèé (âîîáùå ãîâîðÿ): du1+ a1 u1 (t) = 0, t > 0,dtu1 (0) = u10 , a1 > 0(5.32)du2t > 0,dt + a2 u2 (t) = 0,u2 (0) = u20 , a2 > 0.(óñëîâèÿ 1 è 2), ïðè ýòîìa1 >> a2 (a1ìíîãî áîëüøåïîðÿäêîâ).126a2 ,îáû÷íî íà íåñêîëüêîÊàæäàÿ èç êîìïîíåíò óáûâàåò, óñòîé÷èâîñòü åñòü ïî êàæäîìó óñëîâèþ, à çíà÷èò, ñóùåñòâóåò è ðåøåíèå:u(t) = (u1 (t), u2 (t))Tu1 (t) = u10 e−a1 t ,u2 (t) = u20 e−a2 t .Ðèñ.
5.1:u2 (0)áûñòðî óáûâàåò, è ïðè íåêîòîðîìt∗ñòàíåò ïðàêòè÷åñêè ðàâíûìíóëþ.Åñëè áóäåì ðåøàòü çàäà÷ó ÷èñëåííî, òî ðåçóëüòàò áóäåò çàâèñåòü îò òîãî,êàêóþ ñõåìó âûáåðåì.•ßâíàÿ ñõåìà Ýéëåðà. yn+1 −yn11+ a1 y1n = 0, τ y2n+1 −y2nτ(5.33)+ a2 y2n = 0,(óñëîâèÿ 3 è 4)Íà ïðîøëîé ëåêöèè ïîêàçàëè, ÷òî óñòîé÷èâîñòü ñõåìû 5.22 áóäåò ïðèóñëîâèè0<τ <2a1 . À äëÿ cõåìû 5.23 1270<τ <2a2×òîáû îáåñïå÷èòü óñòîé÷èâîñòü ñèñòåìû, ìû äîëæíû âûáðàòü ìèíèìàëüíûé øàã, ò.å.