Диссертация (1154395), страница 27
Текст из файла (страница 27)
По формуле(4.18) находим, что для этих параметров f 0, 43 . Следовательно, из (4.19)получаем, что средняя длина очереди для этого распределения будетпревосходитьаналогичнуювеличинудляравномерногораспределенияприблизительно на 0,16 1 ln N0 ( ) .Таким образом, предложен подход к оценке параметров модели серверапротоколаустановлениясессийсгрупповымзависимости от размера группы заявок.поступлениемзаявоквИзучение такой зависимостистимулировано тем обстоятельством, что распределение размера группы неизвестно в виде генеральной совокупности, и, более того, не может бытьизвестно, ибо эмпирические оценки такой совокупности нестационарны.Поэтому большое значение приобретают приближенные методы оценкипараметров, не «привязанные» к определенному функциональному классууказанных распределений.
Среди непараметрических методов в этой связипредставляетсячувствительностифункциямипродуктивнымпараметровраспределения.нестационарнымметод,моделииспользующийкизменениюВозможностьраспределениямпутемкоэффициентырасстоянийпримененияэтогоинтерпретациимеждуметодакнестационарногоповедения как характерной вариации определенного базового распределения(например, равномерного) позволяет обойти формальную трудность, связаннуюс отсутствием теорем сходимости как по вероятности, так и по норме длярассматриваемыхслучайныхвероятностно-временныхвеличин.характеристикИзложенныймоделиподходсерверакоценкепротоколаустановления сессий и проведенный анализ чувствительности характеристикпозволяет дать рекомендацию инженерам о применении более простых формулдля первичной оценки обслуживания сигнальных сообщений, поступлениекоторых имеет групповой характер, например, сообщений услуги присутствия.Подводя итоги исследованиям, проведенным в главах 3 и 4, отмечаем, чтодля достижения поставленной в диссертационной работе цели в этих главахрешена задача построения и анализа моделей СеМО для оценки времениустановления соединения и моделей СМО с управлением входящим потоком- 152 -для анализа и расчета показателей эффективности серверов протоколаустановления сессий в условиях перегрузок.Показано,чтодляоценкивремениустановлениясоединениявмультисервисных сетях, в т.ч.
для услуг мультимедийной подсистемы,применимы методы, основанные на моделях неоднородных экспоненциальныхСеМО, однородных неэкспоненциальных СеМО и многофазных СМО сфоновым трафиком на фазах системы. Основным результатом здесь являетсяметод оценки времени установления соединений в мультисервисных сетях,основанный на комплексе моделей СеМО и СМО с фоновым трафиком(раздел 3.2). При этом научная новизна основного результата состоит в том, чторанеекомплексмоделейсвозможностьюрасчетаквантилявремениустановления соединения не применялся. Также показано, что для анализапоказателей эффективности управления перегрузками сервера протоколаустановления сессийвусловияхприоритезацииобработки сообщенийприменима двухпотоковая поллинговая модель с пороговым управлениемочередью приоритетных сообщений раздел 3.3), при этом исчерпывающаядисциплина (лемма 3.2) имеет преимущество по критерию вероятностипребывания сервера в множестве состояний перегрузки.
Для анализа механизмауправления перегрузками сервера протокола установления сессий применимамодель СМО с гистерезисным двухпороговым управлением входящим потоком(раздел 4.3), позволяющая вычислять показатели эффективности управления –вероятность блокировки и характеристики с.в. времени выхода сервера изсостояния перегрузки.
При этом научная новизна перечисленных основныхрезультатов глав 3 и 4 состоит в том, что ранее ни поллинг с пороговымуправлением, ни гистерезисное управление не применялись при разработкемоделей сервера протокола установления сессий.- 153 -ГЛАВА 5.ПОСТРОЕНИЕ МОДЕЛЕЙ ДЛЯ АНАЛИЗА ПОКАЗАТЕЛЕЙЭФФЕКТИВНОСТИ ОДНОРАНГОВЫХ СЕТЕЙ5.1. Предварительные замечания к главам 5 и 6Вглавах5и6излагаютсярезультаты,полученныеавторомдиссертационной работы в области построения математических моделей,анализа и расчета показателей качества функционирования одноранговых сетей.Исходя из важности, распространенности на сегодняшний день и долгосрочнойперспективы использования таких сетей согласно концепции Интернетавещей38, исследованы два типа сетей: пиринговые сети (P2P), построенные набазе протоколов типа BitTorrent [132, 198], а также беспроводные сети прямоговзаимодействия устройств (D2D).
Несмотря на разницу применяемых в сетяхP2P и сетях D2D технологий передачи информации, оба типа сетей относятся кодноранговым сетям в смысле взаимодействия «равный с равным», поэтомуизложение материала в диссертационной работе сведено в общие главы 5 и 6. Вглаве 1 (раздел 1.5) был сделан общий обзор технологий P2P и D2D в объеме,достаточном для обоснования исследуемых показателей эффективности ипостроениясоответствующихиммоделей.ДлясетейP2Pстроятсяматематические модели в виде СеМО [14, 70] и ц.м. [13, 68, 69, 73],направленные в основном на исследование показателей качества восприятияуслуг пользователями.
Эти показатели являются наиболее актуальными как насегодняшний день, так и на достаточно долгосрочную перспективу. Какупоминалось в главе 1, такими показателями являются, например, задержканачала воспроизведения и вероятность непрерывного воспроизведения. Длябеспроводных сетей прямого взаимодействия устройств D2D, которые играютключевую роль в концепции Интернета вещей [80, 100], одним из основныхпоказателей эффективности является отношение сигнал/интерференция SIR , откоторого напрямую зависит скорость передачи данных в канале, и какследствие, спектральная эффективность и пропускная способности сетирадиодоступа LTE.Из сказанного вытекает структура и содержание глав 5 и 6 диссертационнойработы.
В главе 5 получен новый результат путем модификации и развитиямодели потоковой P2P сети, известной по работам К. Росса и его учеников [203,38ITU-T Recommendation Y.2060 (06/2012). Overview of Internet of Thing. - ITU-T, June 2012.- 154 -223]. В диссертации модель формализована (раздел 5.2) в виде замкнутой СеМОс однородными и неоднородными заявками [6, 7], что позволило уточнитьоценку К. Росса и получить [4] приближенную формулу для вероятностивсеобщей передачи потокового видео (раздел 5.3). Для сетей D2D построена [55,228] базовая модель для оценки интерференции (раздел 5.4), а именно – модельдля анализа и расчета показателя SIR . Модель построена в терминахстохастической геометрии [10, 11, 139, 185, 256], и для нее получен результат взамкнутом аналитическом виде.
Кроме того, на базе данной моделиисследованы оценки показателя SIR для случая нескольких интерферирующихустройств [163]. При этом сделаны предположения об их размещении в круглыхкластерах (раздел 5.4), а оценки проведены как с помощью точных [55, 228] иприближенных [163] формул, так и с помощью имитационного моделированияметодом Монте-Карло [163] (раздел 5.5).Глава 6 полностью посвящена моделированию и анализу показателейэффективности одноранговой потоковой P2P сети. В этой главе модель строитсяв самых общих предположениях, причем очевидно, что исследовать ееаналитически в общем виде не представляется возможным. Поэтому, во-первых,построена базовая аналитическая модель буферизации данных в потоковой P2Pсети в виде дискретной цепи Маркова [5, 8, 132].
Эта модель позволила накачественном уровне оценить поведение основных показателей качества P2Pсети и понять, что необходимо учесть при построении моделей. Во-вторых,построенаобщаямодель[54],котораяучитываеттакиеособенностифункционирования сети, как стратегии формирования списка соседей, стратегиявыбора целевого пользователя из списка соседей и стратегия выбора порцииданных для загрузки от целевого пользователя.
С точки зрения поведенияпользователей общая модель учитывает их расположение по временным зонам,далее называемое геолокацией, а также их активность в течении суток. Для этоймоделичисленныерезультатыполученыметодомимитационногомоделирования [176].Следующий раздел 5.2 диссертационной работы посвящен построениюаналитической модели одноранговой сети вещательного телевидения Р2РTV ввиде сети массового обслуживания для анализа основного показателя качествапредоставления услуги вещательного телевидения - вероятности всеобщейпередачи, как для отдельного телевизионного канала, так и для сети в целом.- 155 -Далее в разделе 5.3 для одноранговой сети с двумя типами пользователейпостроена аппроксимация вероятностивсеобщейпередачинормальнымзаконом.5.2.
Аналитическая модель сети массового обслуживаниядля одноранговой сети вещательного телевиденияСледуя результатам работ [4, 6, 7, 131, 171], рассмотрим сеть P2PTV, вкоторой транслируетсяM Mканалов, в сети постоянно находятсяNNпользователей, каждый из которых просматривает один из каналов сети. Дляканалов задана их популярность m N , m M , причемM m N 1 .
Такжеm 1задана m1 - средняя длительность просмотра m-го канала пользователем.Модель строится в предположении, что пользователи переключаются с каналана канал независимо друг от друга, тогда моделью, описывающей блужданиепользователяпоканаламсетиP2PTVможетэкспоненциальная СеМО с узлами из множестваизмножестваN.Обозначимxnm 0,1Mслужитьзамкнутаяи однородными заявкамисостояниеn-пользователя,просматривающего m-й канал, где xnm 1, если пользователь просматриваетканал, иначе xnm 0 .
Пространство состояний модели имеет видX X : xnm 0,1 , xnm 1, n N ,mM(5.1)где матрица X xnm nN , mM описывает состояние сети. Сумма xm m-мустолбцуматрицыXсоответствуетчислу xnmпоnNпользователей,просматривающих m-й канал. Тогда множество состояний, когда m-й каналпросматривают ровно k пользователей, имеет вид.Xm k X X : xm k , k 0,..., N ,mM ,(5.2)а маргинальное распределение числа пользователей, просматривающих m-йканал, может быть вычислено по формулеpm k P X Xm k XXm k P X , k 0,..., N , m M .(5.3)- 156 -Поскольку пользователи переключаются с канала на канал независимо другот друга, вероятность P( X) имеет мультипликативный видP( X) mx N , X X .(5.4)nmnN mMНетрудноубедиться,чтовN случаераспределениечислапользователей P2PTV-сети, просматривающих m-й канал, имеет видNN kpm (k ) mk N 1 m N , k 0, N , m M .kСлучайN (5.5)(интерпретируется как сеть с бесконечным числомпользователей) исследован путем предельного перехода от модели с конечнымчислом пользователей, которые постояно находятся в сети, к модели спеременным числом пользователей, т.е.
сети с подключениями и отключениямипользователей.Длябесконечности,случая,когдараспределениечислочислапользователейпользователейстремитсясетикP2PTV,просматривающих m-й канал, имеет видpm (k ) e m mkk!, k 0 , m M ,(5.6)где m lim N m ( N ) .(5.7)N Доказательство формул (5.6) и (5.7) следует из известного предельногоперехода от биномиального распределения к распределению Пуассона [77],причем параметр m соответствует среднему числу пользователей в сети приN . Поскольку в рассматриваемой системе пользователи подключаются ксети и отключаются от нее, а также переключаются с канала на канал,независимо друг от друга, распределение числа пользователей по каналам сетиР2РTV имеет мультипликативный вид:P(k1,, kM ) emM m N mkmkm !, km 0, m M .(5.8)Рассмотрим сеть с конечным числом пользователей N .