Диссертация (1154386), страница 47
Текст из файла (страница 47)
– V. 4-B.– No. 1. – P. 239–267.[186] Ostrovsky E. Exponential Orlicz Spaces: new Norms and Applications /E. Ostrovsky // Electronic Publ., arXiv:math/0406534v1 [math.FA], 25Jun 2004.[187] Ostrovsky E. A remark on the inequalities of Bernstein-Markov type inexponential Orlicz and Lorentz spaces / E. Ostrovsky // Electronic Publ.,arXiv:math/0411617v1 [math.FA], 27 Nov 2004.[188] Ostrovsky E. Some new moment rearrangement invariant spaces;theory and applications / E. Ostrovsky, L. Sirota // Electronic Publ.,arXiv:math/0605732v1 [math.FA], 29 May 2006.401[189] Ostrovsky E. Moment Banach spaces: Theory and applications / E.Ostrovsky, L.
Sirota // HAIT Journal of Science and Engineering C.– 2007. – V. 4. – No. 1-2. – P. 233–262.[190] Ovchinnikov V. I. The method of orbits in interpolation theory / V.I.Ovchinnikov // Math. Rep. – 1984. – V. 1. – No. 2. – P. 349–515.[191] Pakes A. G. Remarks on converse Carleman and Krein criteria for theclassical moment problem / A.G. Pakes // Journal of the AustralianMathematical Society. – 2001. – V.
71. – No. 1. – P. 81–104.[192] Pedersen H. L. On Krein’s Theorem for Indeterminacy of the ClassicalMoment Problem / H.L. Pedersen // Journal of Approximation Theory.– 1998. – V. 95. – No. 1. – P. 90–100.[193] Pichorides S.K. On the best values of the constants in the theoremof M. Riesz, Zygmund and Kolmogorov / S.K. Picoridies // StudiaMathematica. – 1972. – V.
44. – No. 2. – P. 165–179.[194] Pustylnic E. Ultrasymmetric spaces / E. Pustylnic // Journal of theLondon Mathematical Society. – 2003. – V. 68. – No. 1. – P. 165–182.[195] Riesz M. Sur les maxima des formes bilineaires et sur les fonctionnelleslineaires / M. Riesz // Acta Mathematica. – 1927. – V. 49. No. 3-4. –P.
465–497.[196] Rodin V. A. Rademacher series in symmetric spaces / E.M. Semyonov,V.A. Rodin // Anal. Math. – 1975. – V. 1. – No. 3. – P. 207–222.[197] Rubshtein B.-Z. A. Foundations of Symmetric Spaces of MeasurableFunctions. Lorentz, Marcinkiewicz and Orlicz Spaces / B.-Z.A. Rubshtein,402G.Ya. Grabarnik, M.A. Muratov, Yu.S. Pashkova. – Cham, Switzerland:Springer International Publishing AG, 2016.
– xvii+259 pp.[198] Szarek S. J. On the best constant in the Khinchin inequality / S.J. Szarek// Studia Mathematica. – 1976. – V. 58. – No. 2. – P. 197–208.[199] San Juan R. Sur le problème de Watson dans la théorie des sériesasymptotiques et solution d’un problème de Carleman de la théorie desfonctions quasianalytiques / R. San Juan // Acta Mathematica. – 1942.– V. 75.
– No. 1. – P. 247–254.[200] Simons S. Minimax and Monotonicity / S. Simon. – Berlin: SpringerVerlag, 1998. – 172+XI pp. (Lecture Notes in Math., V. 1693)[201] Slud E. V. The Moment Problem for Polynomial Forms in NormalRandom Variables / E.V. Slud // Annals of Probability. – 1993. – V. 21.– No. 4. – P. 2200–2214.[202] Simon B. The Classical Moment Problem as a Self-Adjoint FiniteDifference Operator / B. Simon // Advances in Mathematics.
– 1998.– V. 137. – P. 82–203.[203] Sjölin P. Remarks on theorem by N. Yu. Antonov / P. Sjölin and F. Soria// Studia Mathematica. – 2003. – V. 158. – No. 1. – P. 79–97.[204] Stein E. M. On the Convergence of Poisson Integrals / E.M. Stein, N.J.Weiss // Transactions of the AMS. – 1969. – V. 140. – P. 35–54.[205] Stoyanov J. Krein condition in probabilistic moment problems / J.Stoyanov // Bernoulli. – 2000. – V. 6. – No. 5. – P. 939–949.403[206] Stoyanov J. M. Counterexamples in Probability, Third edition / J.M.Stoyanov. – New York: Dover Publications, 2013.
– 368 pp.[207] Tao T. A Converce Extrapolation Theorem for Translation-InvariantOperators / T. Tao // Journal of Functional Analysis. – 2001. – V. 10. –No. 1. – P. 1–10.[208] Thorin G. O. An extension of a convexity theorem due to M. Riesz / G.O.Thorin // Kungl. Fys. Sallskapets i Lund Forh. – 1938. – V.
8. – No. 14.– P. 166–170.[209] Thorin G. O. Convexity theorems generalizing those of M. Riesz andHadamard with some applications / G.O. Thorin // Comm. Sem. Math.Univ. Lund [Medd. Lunds Univ. Mat. Sem.] – 1948. – V. 9. – P. 1–58.[210] Thorin G. О. Convexity theorems / G.O. Thorin. These, University ofLund, 1948.
– 57 pp.[211] Titchmarsh E. C. Additional note on conjugate functions / E.C.Titchmarsh // J. London Math. Soc. – 1929. – V. 4. – No. 3 – P. 204–206.[212] Wiener N. The homogeneous chaos / N. Wiener // Amer. J. Math. –1941. – V. 60. – No. 4. – P. 897–936.[213] Yano S. Notes on Fourier Analysis (XXIX): An extrapolation theorem /S.Yano // J.
Math. Soc. Japan. – 1951. – V. 3. – No. 2. – P. 296–305.404.