Ширман Я.Д. Теоретические основы радиолокации (1970) (1151795), страница 15
Текст из файла (страница 15)
4» 83 время неотъемлемой частью конструкции, выдерживающей механическую и тепловую нагрузки. Описаны накидки и костюмы для противорадиолокационной маскировки танков, орудий, людей и т. д. Специальные малоотр жающие формы объектов рассчитаны на отклонение максимума отраженной энергии в сторону от направления на приемник радиолокатора, При экспериментальном исследовании вторичного излучения на моделях могут ставиться н а к л о ин ы е проводящие и отражающие энергию п л о с к о с т и, которые экранируют отражение от стен.
Головным частям баллистических ракет может придаваться к о н и ч е с к а я ф о р м а, чтобы ослабить их вторичное излучение. Последнее наиболее эффективно в случае стабилизации этих частей в полете. Специальные формы могут придаваться и аэродинамическим крылатым ракетам типа «воздух †зем». Малоотражающие формы имеют неодинаковую эффективность в диапазоне частот. Для гладкой проводящей конической поверхности с углом при вершине 20, облучаемой вдоль оси, по формуле ((6), ~ 2.61, соответствующей условиям совмещенной локации, можно получить ГЛАВА 3 ОСНОВЫ ТЕОРИИ И ПРИНЦИПЫ ОПТИМАЛЬНОГО ОБНАРУЖЕНИЯ СИГНАЛОВ НА ФОНЕ ФЛ1ОКТУАЦИОННЫХ ПОМЕХ А. ОСНОВНЫЕ СООТНОШЕНИЯ ТЕОРИИ ОБНАРУЖЕНИЯ ф 3.1. Качественные показатели и критерии оптимальности радиолокационного обнаружения В результате процесса обнаружения должно быть выдано решение о наличии или отсутствии цели в произвольном разрешаемом объеме зоны действия радиолокатора.
Решение может быть принято при двух взаимно исключающих условиях: условие А, — «цель есть», условие А, — «цели нет», которые при выработке решения неизвестны. За счет помех и флюктуаций полезного сигнала каждому условию могут соответствовать два вида решений: решение А ~ — «цель есть», решение А", — «цели нет». (Третьего решения — «не знаю» — после завершения процесса обнаружения быть пе должно.) Обратим внимание на то, что решения А ~ и А о обозначаются так же, как и условия, но с добавлением звездочки.
При обнаружении возможны четыре ситуации совмещения случайных событий «решения» и «условия»: Перечисленным ситуациям соответствуют четыре вероятности совмещения событий, сумма которых равна единице: Р(А~ А1)+Р (Ао А1~+Р(А~ А„)+Р(Ао А) =1. (1) $3.1 1) ситуация 2) ситуация 3) ситуация 4) ситуация А1А, АоА, А~ А, Ао Ао (правильное обнаружение); (пропуск цели); (ложная тревога); (правильное необнаружение).
Каждому ошибочному решению поставим в соответствие некоторую плату — стоимость ошибки г,. (( = О, 1; й = О, 1). Для безошибочных решений эту стоимость условимся считать равной нулю г„= гоо = О. Тогда систему обнаружения можно характеризовать средней стоимостью (математическим ожиданием стоимости) ошибочных решений М (г) = г=го1Р(Ао А1) +г~о Р(А~ Ао) (2) Лучшей из сравниваемых систем обработки можно тогда счи. тать систему, удовлетворяющую критерию минимума этой стоимости, иначе — критерию минимума среднего. риска.
Ввйду того что задание вероятностей наличия и отсутствия целей Р(А,) и Р(А,), называемых априорными (доопытпыми), вызывает практические трудности, затруднителен и расчет вероятностей совмещения Р(Ао А,) и Р(А~ А,), Поэтому при проектировании и испытании реальной аппаратуры переходят к условным вероятностям, являющимся качественными показателями обнаружения при условиях наличия и отсутствия цели. Качественными показателями обнаружения при условии наличия цели являются соответствующие условные вероятности правильного обнаруокения 0= Р (А~ ( А,) = Р (А1 А,) (Р (А,) (3) и пропуска цели О=Р (Ао! А1) = Р (Ао А1) /Р(Ад).
(4) Поскольку соответствующие одному и тому же условию А, решения А1 и Ао взаимоисключающие, то 0+0=1. (5) Р= Р (А1~ Ао) = Р (А1Ао) 1Р(Ао) и правильного необнаружения Р=- Р (Ао~Ао) =Р (Ао Ао) ~Р(Ао) (7) причем Используя приведенные соотношения (3) — (7), выражение (2) для средней стоимости ошибки можно представить в виде г =- со1 Э Р (А1) + г ц~ РР (Ао) г Качественными показателями обнаружения при условии отсут. . ствия цели являются условные вероятности ложной тревоги или, после замены О=1 — О и простых преобразований, г = го1 Р (А1) [1 — (Π— 1о Р) ) ~1о ~' (А») о— ~«~ Р(А1) (8) (9) где При этом критерий оптимизации обнаружения по минимуму сред- него риска сводится к так называемому весовому критерию Π— 1,Р = гпах.
(10) Последний показывает, что по совокупности требований повышения условной вероятности правильного обнаружения О и понижения условной вероятности ложной тревоги Р следует стремиться к увеличению «взвешенной» разности Π— 1,Р. Множитель |„называемый весовым множителем, зависит от соотношения стоимостей ошибок каждого вида и вероятностей наличия или отсутствия цели в исследуемом участке пространства. Если при одинаковом весовом множителе 1, сравниваются две системы обработки информации, из которых первая является оптимальной, то в силу (10) можно написать О,„, — 1,Р„„) О— — 1,Р, или О,„, ) О + 1,(Р,„, — Р).
Тогда при Р ( Р„„ имеем О,„, ) О или О,„,(0. Это означает, что оптимальный обнаружйтель дает наименьшую вероятность пропуска среди всех обнаружителей, у которых условная вероятность ложной тревоги не больше, чем у оптимального. Данное условие можно припять в качестве самостоятельного критерия оптимальности (критерий Неймана — Пврсона), который, однако, как и весовой, по существу является следствием более общего критерия минимума среднего риска. Допустимые значения условных вероятностей правильного обнаружения и ложной тревоги обычно устанавливают из практических соображений.
Значения условных вероятностей ложной тревоги Р и правильного необнаружения Р задаются обычно для разрешаемого элемента пространства. За определенный интервал времени работы радиолокатор просматривает большое число т таких элементов. Каждый из этих элементов может явиться источником ложной тревоги, непроизводительно загружающим вычислительные устройства обработки информации, либо приводящим к неправильным конечным решениям. Поэтому наряду с вероятностями Р и Р для одного элемента вводятся соответствующие условные вероятности Р и Р„,для совокупности из т элементов. Условная вероятность правильного необнаружения Р„, (отсутствия ложной тревоги) для совокупности из т элементов по теореме умножения вероятностей независимых событий является произведением т одинаковых вероятностей отсутствия ложной тревоги для каждого из и 86 $3! элементов разрешения. В частном случае, если условные вероятности ложной тревоги для всех элементов разрешения одинаковы, получим (~)т (1 ~)т откуда при Е( — вероятность хотя бы одной ложной тревоги !П для совокупности из и элементов 1 ( 1 Р ) ~ щ Е (11) При т )) 1 величина Р'„„~=Р'.
Поэтому в теории обнаружения радиолокационных сигналов™обычно оперируют с весьма малыми значениями допустимой вероятности ложной тревоги для каждого из разрешаемых элементов Р, „.„= г' „„,/т. Пусть в течение длительности цикла обзора, равной 10 сек, просматривается и = 10' раздельно разрешаемых элементов пространства. Тогда, задаваясь, например, допустимым значением условной вероятности ложнойтревоги Р „, = 10 — ' —:10-' (хотя бы один раз за весь цикл обзора), найдем, что допустимое значение условной вероятности ложной тревоги в каждом разрешаемом объеме будет Р~,„= 10 — ~ —:10-'. Это значит, что если оператор принимает решение о наличии цели по пачке импульсов, образующих «дужку» на экране индикатора, то вероятность образования ложной отметки, близкой к «дужке» и проходящей через данную точку экрана, не должна быть выше 10-6 —:10 — '.
Естественно, что отдельные шумовые выбросы на экране могут при этом появляться со значительно большей вероятностью. Подобное встречается и при автоматизированной обработке, в том числе с использованием электронных цифровых вычислительных машин. В последнем случае отсеивание излишне большого числа ложных тревог в отдельных периодах повторения импульсов производится не оператором, а машиной, в результате может быть обеспечена условная вероятность ложной тревоги менее заданной величины Р„„„например Р „, = 10 —" —: 10 — 8 для всегосигнала (пачки импульсов) в целом.
Допустимое значение условной вероятности ложной тревоги для этого сигнала может быть повышено, если производительность вычислительной машины достаточно велика и обеспечивает в дальнейшем отсеивание ложных отметок при завязке трасс целей. Вероятность правильного обнаружения Р стремятся сделать возможно большей, что особенно трудно обеспечить, когда цель находится на значительном удалении и энергия отраженных сигналов крайне мала.