Диссертация (1150919), страница 13
Текст из файла (страница 13)
A fast distributed algorithmfor large-scale demand response aggregation // IEEE Transactions onSmart Grid. – 2016. – Vol. 7. – P. 2094–2107.[76] Nedic A., Ozdaglar A., Parrilo P.A. Constrained consensus andoptimization in multi-agent networks // IEEE Transactions onAutomatic Control. – 2010. – Vol. 55, No. 4. – P. 922–938.[77] Nedic A., Olshevsky A. Distributed optimization over time-varyingdirected graphs // IEEE Transactions on Automatic Control. – 2015.– Vol. 60, No. 3. – P. 601–615.[78] Nedic A., Ozdaglar A. Distributed subgradient methods for multi-agentoptimization // IEEE Transactions on Automatic Control.
– 2009. –Vol. 54, No. 1. – P. 48–61.[79] Nesterov Y., Nemirovsky A. A general approach to polynomialtime algorithms design for convex programming // Report, CentralEconomical and Mathematical Institute, USSR Academy of Sciences,Moscow. – 1988.[80] Nesterov Y., Nemirovskii A. Interior-point Polynomial Algorithms inConvex Programming. – Siam, 1994.
– 405 p.[81] Olfati-Saber R., Murray R.M. Consensus problems in networks ofagents with switching topology and time-delays // IEEE Transactionson Automatic Control. – 2004. – Vol. 49, No. 9. – P. 1520–1533.[82] Olfati-Saber R. Distributed Kalman filter with embedded consensusfilters // In: Proc. of 44th IEEE Conference on Decision and Control.– 2005. – P.
8179–8184.83[83] Proskurnikov A.V., Matveev A.S., Cao M. Opinion dynamics in socialnetworks with hostile camps: Consensus vs. polarization // IEEETransactions on Automatic Control. – 2016. – Vol. 61, No. 6. – P.1524–1536.[84] Proskurnikov A.V. Average consensus in networks with nonlinearlydelayed couplings and switching topology // Automatica. – 2013. –Vol. 49, No. 9. – P.
2928–2932.[85] Polyak B., Khlebnikov M., Shcherbakov P. An LMI approach tostructured sparse feedback design in linear control systems // In: Proc.of 2013 European Control Conference (ECC). – 2013. – P. 833–838.[86] Polyak V.T., Tsybakov A.V. On stochastic approximation witharbitrary noise (the KW Case) // Topics in Nonparametric Estimation.– 1992.
– V. 12. – P. 107–113.[87] Peng C., Hui Q. Real-time distributed decomposition for large-scaledistributed fault diagnosis over dynamic graphs // In: Proc. ofAmerican Control Conference. – 2016. – P. 2472–2477.[88] Ren W., Beard R.W. Consensus seeking in multi-agent systems underdynamically changing interaction topologies // IEEE Transactions onAutomatic Control. – 2005.
– Vol. 50, No. 5. – P. 655–661.[89] Ren W., Beard R. W., Atkins E.M. Information consensus in multivehicle cooperative control // IEEE Control Systems. – 2007. – Vol.27, No. 2. – P. 71–82.[90] Rzevski G., Skobelev P. Managing Complexity. – Wit Press, 2014.[91] Rajagopal R., Wainwright M. J. Network-based consensus averagingwith general noisy channels // IEEE Transactions on Signal Processing.– 2011. – Vol. 59, No. 1.
– P. 373–385.[92] Robbins H., Monro S. A stochastic approximation method // TheAnnals of Mathematical Statistics. – 1951. – Vol. 22. – P. 400–407.[93] Rabbat M., Nowak R. Distributed optimization in sensor networks //In: Proc. of the 3rd international Symposium on Information Processingin Sensor Networks. – 2004. – P. 20–27.84[94] Spall J.C. Introduction to Stochastic Search and Optimization:Estimation, Simulation, and Control. – John Wiley & Sons, 2005. –618 p.[95] Spall J.C. Identification for systems with binary subsystems // IEEETransactions on Automatic Control.
– 2014. – Vol. 59, No. 1. – P. 3–17.[96] Spall J.C. Multivariate stochastic approximation using a simultaneousperturbation gradient approximation // IEEE Transactions onAutomatic Control. – 1992. – Vol. 37, No. 3. – P. 332–341.[97] Spall J.C. A one measurement form of simultaneous perturbationstochastic approximation // Automatica. – 1997.
– Vol. 33. – P. 109–112.[98] Spall J.C. Cyclic seesaw process for optimization and identification //Journal of Optimization Theory and Applications. – 2012. – Vol. 154,No. 1. – P. 187–208.[99] Spall J.C. Identification for systems with binary subsystems // IEEETransactions on Automatic Control. – 2014. – Vol. 59, No. 1. – P. 3–17.[100] Slotani M. Tolerance regions for a multivariate normal population //Annals of the Institute of Statistical Mathematics. – 1964. – Vol. 16,No. 1. – P.
135–153.[101] Shchegryaev A. N., Zakharov V. V. Multi-period cooperative vehiclerouting games // Contributions to Game Theory and Management. –2014. – Vol. 7. – P. 349–359.[102] Tsitsiklis J.N. Problems in Decentralized Decision Making andComputation. – Ph.D. dissertation, MIT. – 1984.[103] Tsitsiklis J., Bertsekas D., Athans M. Distributed asynchronousdeterministic and stochastic gradient optimization algorithms // IEEETransactions on Automatic Control.
– 1986. – Vol. 31, No. 9. – P. 803–812.[104] Vicsek T., Czirók A., Ben-Jacob E., Cohen I, Shochet O. Novel type ofphase transition in a system of self-driven particles // Physical reviewletters. – 1995. – Vol. 75, No. 6. – P. 1226–1229.[105] Vicsek T., Zafeiris A. Collective motion // Physics Reports. – 2012. –Vol. 517, No. 3-4. – P. 71–140.85[106] Vergados D.J., Amelina N., Jiang Y., Kralevska K., Granichin O.Towards optimal distributed node scheduling in a multihop wirelessnetwork through Local Voting // IEEE Transactions on WirelessCommunications.
– 2018. – Vol. 17, No. 1. – P. 400–414.[107] Wooldridge M. An introduction to Multi-agent Systems. – John Wiley& Sons, 2009. – 484 p.[108] Wei B., Nener B., Liu W., Ma L. Centralized multi-sensor multitarget tracking with labeled random finite sets // In: Proc. ofInternational Conference on Control, Automation and InformationSciences (ICCAIS). – 2016. – P. 82–87.[109] Jakubovic V.A.
The solution of certain matrix inequalities in automaticcontrol // Soviet Math. – 1962. – Vol. 3. – P. 620–623.[110] Yacubovich V.A. Solution of certain matrix inequalities encounteredin nonlinear control theory // Soviet Doklady Mathematics. – 1964. –Vol. 5. – P. 652–656.[111] Yakubovich V.A. Dichotomy and absolute stability of nonlinear systemswith periodically nonstationary linear part // Systems & controlletters.
– 1988. – Vol. 11, No. 3. – P. 221–228.[112] Yang Y., et al. A Parallel decomposition method for nonconvexstochastic multi-agent optimization problems // IEEE Transactionson Signal Processing. – 2016. – Vol. 64, No. 11. – P. 2949–2964.[113] Yin G., Wang L.Y., Zhang H. Stochastic approximation methodspowerful tools for simulation and optimization: a survey of some recentwork on multi-agent systems and cyber-physical systems // In: AIPConference Proceedings. – 2014.
– Vol. 1637, No. 1. – P. 1263–1272.[114] Zhu J., Spall J. C. Tracking capability of stochastic gradient algorithmwith constant gain // In: Proc. of the 55th Conference on Decision andControl. – 2016. – P. 4522–4527.[115] Zhu M., Martinez S. Discrete-time dynamic average consensus //Automatica. – 2010. – Vol. 46, No. 2. – P. 322–329.86.