Диссертация (1150795), страница 14
Текст из файла (страница 14)
Rev. Lett., Vol. 68, 1992. pp. 3686–3689.72. Asfin R.E., Buldyreva J.V., Sinyakova T.N., Oparin D.V., Filippov N.N. Communication:Evidence of stable van der Waals CO2 clusters relevant to Venus atmosphere conditions //J. Chem. Phys., Vol. 142, No. 5, 2015. pp.
051101(1-4).73. Rutkowski K.S., Tokhadzea K.G., Lipkowski P., Koll A., Ahmedjonov R., Kulieva M. Evolutionof IR spectra of a weakly-bound OCO⋯HCl complex with increasing CO2 density from thegas to liquid phase // J. Mol. Str., Vol. 598, 2001. pp. 205-211.74. Tokhadze K.G., Utkina S.S. Evolution of the vHF absorption bands of B.HF complexes ontransition from the gas to liquid phase // Chem. Phys., Vol. 294, 2003. pp. 45-63.75.
MacCormack K.E., Schneider W.G. Intermolecular potentials. I. Carbon tetrafluoride andsulfur hexafluoride. II. Carbon dioxide // J. Chem. Phys., Vol. 19, No. 7, 1951. pp. 849-855.8076. Greene F.T., Milne T.A. Mass spectrometric detection of polymers in supersonic molecularbeams // J.
Chem. Phys., Vol. 39, No. 11, 1963. pp. 3150-3150.77. Baranov Y.I., Vigasin A.A. Collision-Induced Absorption by CO2 in the Region of ν1, 2ν2 // J.Mol. Spectrosc., Vol. 193, 1999. pp. 319-325.78. Vigasin A.A. Intensity and Bandshapes of Collision-Induced Absorption by CO2 in the Regionof the Fermi Doublet // J. Mol. Spectrosc., Vol. 200, 2000. pp. 89-95.79. Vigasin A.A., Baranov Y.I., Chlenova G.V.
Temperature Variations of the Interaction InducedAbsorption of CO2 in the ν1, 2ν2 Region: FTIR Measurements and Dimer Contribution // J.Mol. Spectrosc., Vol. 213, 2002. pp. 51-56.80. Baranov Y.I., Lafferty W.J., Fraser G.T., Vigasin A.A. On the origin of the band structureobserved in the collision-induced absorption bands of CO2 // J. Mol. Spectrosc., Vol. 218,2003. pp. 260-261.81.
Иванов С.В. Нелинейная колебательно-вращательная спектроскопия неравновесныхмногокомпонентных газов и ее применение в диагностике атмосферы // Диссертацияна соискание ученой степени доктора физ.-мат. наук. Москва. 2006.82. Dorfeld W.G., Hudson J.B. Condensation in CO2 free jet expansion.
I. Dimer formation // J.Chem. Phys., Vol. 59, No. 3, 1973. pp. 1253-1260.83. Jones G.G., Taylor J.W. A photoionization study of carbon dioxide dimers in a supersonicmolecular beam // J. Chem. Phys., Vol. 68, No. 4, 1978. pp. 1768-1775.84. Steed J.M., Dixon T.A., Klemperer W. Determination of the structure of ArCO2 by radiofrequency and microwave spectroscopy // J. Chem. Phys., Vol. 70, No. 9, 1979. pp. 40954100.85. Jucks K.W., Huang Z.S., Dayton D., Miller R.E., Lafferty W.J. The structure of the carbondioxide dimer from near infrared spectroscopy // J. Chem. Phys., Vol. 86, No.
8, 1987. pp.4341-4346.86. Walsh M.A., England T.H., Dyke T.R., Howard B.J. Pulsed molecular beam infraredabsorption spectroscopy of CO2 dimer // Chem. Phys. Lett., Vol. 142, No. 3,4, 1987. pp. 265270.87. Jucks K.W., Huang Z.S., Miller R.E., Fraser G.T., Pine A.S., Lafferty W.J. Structure andvibrational dynamics of the CO2 dimer from the sub-Doppler infrared spectrum of the 2.7μm Fermi diad // J. Chem.
Phys., Vol. 88, No. 4, 1988. pp. 2185-2195.8188. Randall R.W., Walsh M.A., Howard B.J. Infrared Absorption Spectroscopy of Rare-gas - CO2Clusters produced in Supersonic Expansions // Farad. Discuss., Vol. 85, 1988. pp. 13-21.89. Moreau G., Boissoles J., Le Doucen R., Boulet C., Tipping R.H., Ma Q. Metastable dimercontributions to the collision-induced fundamental absorption spectra of N2 and O2 pairs// J. Quant. Spectr. Radiat. Transf., Vol. 70, 2001. pp. 99-113.90. Pattengill M.D.
Comparison of classical trajectory and exact quantal cross-sections forrotationally inelastic Ar-N2 collisions // Chem. Phys. Lett., Vol. 36, No. 1, 1975. pp. 25-28.91. Pattengill M.D. On the use of bodyfixed coordinates in classical scattering calculations:Planar trajectory approximation for rotational excitation // J. Chem. Phys., Vol.
66, No. 11,1977. pp. 5042-5045.92. Pattengill M.D. Comparison of planar trajectory and classical centrifugal decoupling crosssections for rotationally inelastic Ar–HCl collisions // J. Chem. Phys., Vol. 68, No. 7, 1978.pp. 3315-3316.93. Nyeland C., Billing G.D. Rotational relaxation of homonuclear diatomic molecules byclassical trajectory computation // Chem. Phys., Vol. 30, 1978. pp. 401-406.94. Gordon R.G. Theory of the Width and Shift of Molecular Spectral Lines in Gases // J.
Chem.Phys., Vol. 44, No. 8, 1966. pp. 3083-3089.95. Gordon R.G. On the Pressure Broadening of Molecular Multiplet Spectra // J. Chem. Phys.,Vol. 46, No. 2, 1967. pp. 448-455.96. Gordon R.G., McGinnis R.P. Line Shapes in Molecular Spectra // J. Chem. Phys., Vol. 49, No.5, 1968. pp. 2455-2456.97.
Gordon R.G., McGinnis R.P. Intermolecular Potentials and Infrared Spectra // J. Chem.Phys., Vol. 55, No. 10, 1971. pp. 4898-4906.98. Gruszka M., Borysow A. Computer simulation of the far infrared collision inducedabsorption spectra of gaseous CO2 // Mol. Phys., Vol. 93, No. 6, 1998. pp. 1007-1016.99. Preston R.K., Pack R.T. Classical trajectory studies of rotational transitions in Ar–CO2collisions // J. Chem. Phys., Vol. 66, No. 6, 1977. pp. 2480-2487.100. Preston R.R., Pack R.T. Mechanism and rates of rotational relaxation of CO2(001) in He andAr // J.
Chem. Phys., Vol. 69, No. 6, 1978. pp. 2823-2832.82101. Ivanov S.V. Peculiarities of atom–quasidiatom collision complex formation: classicaltrajectory study // Mol. Phys., Vol. 102, No. 16-17, 2004. pp. 1871-1880.102. Ivanov S.V. Quasi-bound complexes in collisions of different linear molecules: Classicaltrajectory study of their manifestations in rotational relaxation and spectral linebroadening // J. Quant.
Spectr. Radiat. Transf., Vol. 177, 2016. pp. 269-282.103. Thibault F., Gomez L., Ivanov S.V., Buzykin O.G., Boulet C. Comparison of quantum, semiclassical and classical methods in the calculation of nitrogen self-broadened linewidths //J. Quant. Spectr. Radiat. Transf., Vol. 113, 2012. pp. 1887–1897.104. Shafer R., Gordon R.G. Quantum scattering theory of rotational relaxation and spectral lineshapes in H2 – He gas mixtures // J. Chem. Phys., Vol. 58, No.
12, 1973. pp. 5422-5443.105. Tsao C.J., Curnutte B. Line-widths of pressure-broadened spectral lines // J. Quant. Spectr.Radiat. Transf., Vol. 2, No. 1, 1962. pp. 41-91.106. Neilsen W.B., Gordon R.G. On a semiclassical study of molecular collisions. I. Generalmethod // J. Chem. Phys., Vol. 58, No. 10, 1973. pp. 4131-4148.107. Neilsen W.B., Gordon R.G.
On a semiclassical study of molecular collisions. II. Applicationto HCl-argon // J. Chem. Phys., Vol. 58, No. 10, 1973. pp. 4149-4170.108. Smith E.W., Giraud M., Cooper J. A semiclassical theory for spectral line broadening inmolecules // J. Chem. Phys., Vol. 65, No. 4, 1976. pp.
1256-1267.109. Lynch R., Gamache R.R., Neshyba S.P. Fully complex implementation of the Robert–Bonamy formalism: Half widths and line shifts of H2O broadened by N2 // J. Chem. Phys.,Vol. 105, No. 14, 1996. pp. 5711-5721.110. Buldyreva J., Lavrentieva N., Starikov V.
Collisional Line Broadening and Shifting ofAtmospheric Gases: A Practical Guide for Line Shape Modeling by Current SemiclassicalApproaches. London: Imperial College Press, 2011.111. Ma Q., Boulet C., Tipping R.H. Refinement of the Robert-Bonamy formalism: Consideringeffects from the line coupling // J. Chem. Phys., Vol. 139, No. 3, 2013. pp. 034305(1-16).112. Bunker D.L. Classical Trajectory Methods // Methods in Computational Physics: Advancesin Research and Applications, Vol.
10, 1971. pp. 287-325.113. Li H., Blinov N., Roy P.N., Le Roy R.J. Path-integral Monte Carlo simulation of ν3 vibrationalshifts for CO2 in (He)n clusters critically tests the He–CO2 potential energy surface // J.Chem. Phys., Vol. 130, No. 14, 2009. pp. 144305(1-11).83114. Kranendonk J.V., Gass D.M. Theory of the line shape in quadrupole-induced infraredspectra // Can.
J. Phys., Vol. 51, 1973. pp. 2428-2440.115. Варшалович Д.А., Москалев А.Н., Херсонский В.К. Квантовая теория угловогомомента. Ленинград: Наука, 1975.116. Bose T.K., Cole R.H. Dielectric and Pressure Virial Coefficients of Imperfect Gases. II.CO2–Argon Mixtures // J. Chem. Phys., Vol. 52, No. 1, 1970. pp. 140-147.117.
Hutson J., Ernesti A., Law M.M., Roche C.F., Wheatley R.J. The intermolecular potentialenergy surface for CO2–Ar: Fitting to high-resolution spectroscopy of Van der Waalscomplexes and second virial coefficients // J. Chem. Phys., Vol. 105, No. 20, 1996. pp. 91309140.118. Cui Y., Ran H., Xie D. A new potential energy surface and predicted infrared spectra of theAr–CO2 van der Waals complex // J. Chem.