Главная » Просмотр файлов » Диссертация

Диссертация (1150701), страница 13

Файл №1150701 Диссертация (Решение минимаксных задач размещения на плоскости с прямоугольной метрикой на основе методов идемпотентной алгебры) 13 страницаДиссертация (1150701) страница 132019-06-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 13)

Полное решение задачи безограничений на допустимую область размещения приведено в виде следствия 11, с разного рода ограничениями (произвольный отрезок прямой,прямоугольник) – в виде следствий 14, 15.– для решения задач оптимального размещения центра управления системой видеонаблюдения. Результаты решения приведены в следствии 16.Важно отметить, что для решения описанных выше задач получены полныеаналитические решения в явном виде. Их использование при решении минимаксных задач размещения позволяет понизить алгоритмическую сложностьвычислений, в сравнении с известными итерационными подходами.

Так, предложенный в работе [66] алгоритм нахождения оптимальной области размещенияточечного объекта на плоскости с прямоугольной метрикой на основе геометрического подхода, имеет алгоритмическую сложность (2 ). Нетрудно понять,что развитые в диссертационной работе методы позволяют понизить сложностьвычислений для нахождения оптимальной области размещения до (), где количество исходных объектов.101ЗаключениеПо итогам выполненного диссертационного исследования можносделать главный вывод, что его цель, состоявшая в разработке новых математических методов решения минимаксных задач размещения точечных объектовна плоскости с прямоугольной метрикой на основе применения методов идемпотентной алгебры и программно-алгоритмического обеспечения для их реализации при проектировании комплексов аппаратных средств автоматизацииинформационных процессов, – достигнута.

Все поставленные научные задачирешены в полном объеме.Основные результаты работы заключаются в следующем:– разработаны методы решения задач оптимизации функций на идемпотентных полуполях с несколькими переменными на основе решения расширенной задачи в векторной форме с использованием экстремальныхсвойств идемпотентного спектрального радиуса матрицы;– разработаны методы решения задач оптимизации функций на идемпотентных полуполях с несколькими переменными с помощью сведения задачи оптимизации к системе параметризованных неравенств и последующего нахождения всех ее решений;– исследованы минимаксные задачи размещения с прямоугольной метрикойна плоскости и в трехмерном пространстве с ограничениями и без ограничений, включая представление этих задач в виде задач оптимизации втерминах тропической алгебры, построены прямые решения таких задачв явном виде и проведена оценка вычислительной сложности соответствующих алгоритмов;102– предложены рекомендации по применению разработанных методов длярешения задач оптимального размещения центрального сервера управления в сети локальных коммуникаций и оптимального размещения центрауправления системой видеонаблюдения;– на основе полученных результатов разработаны программные средствадля решения задач размещения и их практического применения для решения прикладных задач.Рекомендации:– разработанные методы рекомендуются к применению в области оптимизации информационных систем, связанных с проектированием процессовсоздания, накопления и обработки информации, исследованием принципов создания и функционирования аппаратных средств автоматизации,моделированием информационных потребностей коллективных и индивидуальных пользователей и способов их удовлетворения, разработкой ианализом моделей информационных процессов и структур и др.;– также, на основе разработанных программных средств, реализующихновые методы решения задач оптимизации, могут быть разработаныпрограммные изделия для использования при проектировании создания и развития комплексов средств автоматизации и информационнокоммуникационных систем.Перспективы дальнейшей разработки темы:– в диссертационной работе (п.2.2.5) предложен подход к решению оптимизационной задачи размещения в 3-х мерном пространстве в общем виде безограничений на допустимую область размещения 1-центра.

Перспективным направлением исследований является детальное изучение методов еерешения применительно к различным типовым ограничениям, также рассмотренным в диссертации, но применительно к двухмерной постановкезадачи;– разработка методов решения оптимизационной задачи размещения сосложными системами ограничений нелинейного характера;103– постановка исследовательской задачи динамической оптимизации размещения 1-центра в условиях изменения системы ограничений и локализации исходного набора обслуживаемых объектов, а также поиск итерационных и аналитических процедур ее решения;– формализация типовых задач проектирования и развития комплексовсредств автоматизации и информационно-коммуникационных систем вцелях применения для их совершенствования разработанных математических методов;– разработка методов решения минимаксных задач размещения -центра(размещение нескольких объектов).104Литература1.

Krivulin N. K. Using tropical optimization to solve constrained minimax singlefacility location problems with rectilinear distance / N. K. Krivulin // Com-putational Management Science. — 2017. — Vol. 14, N. 4. — P. 493–518.2. Cieszynski J. Closed circuit television / J. Cieszynski. — UK: Elsevier Science,2006. — 275 p.3. Дамьяновски В. CCTV. Библия видеонаблюдения. Цифровые и сетевыетехнологии / В. Дамьяновски.

— М.: ООО «Ай-Эс-Эс Пресс», 2006. — 478с.4. Миннивалиев Ш. Р. Использование 3D моделирования для рациональногоразмещения камер видеонаблюдения в торговых залах / Ш. Р. Миннивалиев, Д. Р. Шагаипов // Интеграция современных научных исследованийв развитие общества. 28-29 декабря 2016 г. — Кемерово, 2016. — С. 167–169.5. Березин А. С. Технология и конструирование интегральных микросхем /А.

С. Березин, О. Р. Мочалкина. — М.: Радио и связь, 1983. - 232 с.6. ШелохвостовВ.П.Проектированиеинтегральныхмикросхем/В. П. Шелохвостов, В. Н. Чернышов. — Тамбов: Изд-во ТГТУ, 2008. –208 с.7. Посыпкин М. А. Сравнительный анализ эффективности различных вариантов метода динамического программирования для решения оптимизационных задач на этапе размещения элементов микросхем / М. А.

Посыпкин,Т. Т. С. Си, // Проблемы разработки перспективных микро-и наноэлек-тронных систем (МЭС). — 2014. — № 2. — С. 97–100.1058. Пирогова Е. В. Проектирование и технология печатных плат /Е. В. Пирогова. — М.: Форум, 2005. - 559 с.9. Медведев А. М. Печатные платы / А. М. Медведев // Конструкции иматериалы. М.: Техносфера. — 2005. — С. 22–25.10. Комков А. Кристалл-корпус-печатная плата. Проектирование соединений/ А. Комков,Г.

Хренов // Электроника: наука, технология, бизнес. —2005. — № 7. — С. 84–88.11. Воробьев Н. Н. Экстремальная алгебра положительных матриц / Н. Н. Воробьев // Elektronische Informationsverarbeitung und Kybernetik. — 1967. —Т. 3, № 1. — С. 39–72.12. Воробьев Н. Н. Экстремальная алгебра неотрицательных матриц /Н. Н. Воробьев // Elektronische Informationsverarbeitung und Kybernetik.— 1970. — Т. 6, № 4-5. — С.

303–312.13. Воробьев Н. Н. Экстремальная алгебра матриц / Н. Н. Воробьев // До-клады АН СССР. — 1963. — Т. 152, № 1. — С. 24–27.14. Маслов В. П. Идемпотентный анализ и его применение в оптимальномуправлении / В. П. Маслов, В. Н. Колокольцов. — М.: Физматлит, 1994.— 144 с.15. Maslov V. P. On a new superposition principle for optimization problem /V. P. Maslov // Séminaire Équations aux Dérivées Partielles (Polytechnique).— 1985. — P. 1–14.16.

Романовский И. В. Оптимизация стационарного управления дискретнымдетерминированным процессом / И. В. Романовский // Кибернетика. —1967. — № 2. — С. 66–78.17. Романовский И. В. Асимптотическое поведение дискретного детерминированного процесса с непрерывным множеством состояний / И. В. Романовский // Оптимальное планирование.

— 1967. — № 8. — С. 171–193.10618. Романовский И. В. Алгоритмы решения экстремальных задач /И. В. Романовский. — M: Наука, 1977. — 352 с.19. Корбут А. А. Экстремальные пространства / А. А. Корбут // ДокладыАкадемии наук. — 1965. — Т. 164, № 6. — С. 1229–1231.20. Cuninghame-GreenR.A.Minimaxalgebraandapplications/R. A. Cuninghame-Green // Fuzzy Sets and Systems. — 1991. — Vol.

41. —P. 251–267.21. Zimmermann U. Linear and combinatorial optimization in ordered algebraicstructures / U. Zimmermann. — Elsevier, 2011. — 390 p.22. Литвинов Г. Л. Деквантование Маслова, идемпотентная и тропическаяматематика: краткое введение / Г. Л. Литвинов // Записки научных се-минаров ПОМИ. — 2005. — Т. 326. — С. 145–182.23. Litvinov G. L. Idempotent and tropical mathematics; complexity of algorithmsand interval analysis / G. L. Litvinov // Computers and Mathematics withApplications. — 2013.

— Vol. 65, N. 10. — P. 1483–1496.24. Mikhalkin G. Enumerative tropical algebraic geometry in R2 / G. Mikhalkin //Journal of the American Mathematical Society. — 2005. — Vol. 18, N. 2. —P. 313–377.25. Mikhalkin G. Real algebraic curves, the moment map and amoebas /G. Mikhalkin // Annals of Mathematics. — 2000.

— Vol. 151, N. 1. — P. 309–326.26. Guterman A. E. Tropical patterns of matrices and the Gondran-Minoux rankfunction / A. E. Guterman, Ya. N. Shitov // Linear Algebra and its Applica-tions. — 2012. — Vol. 437. — P. 1793–1811.27. Akian M. Linear independence over tropical semirings and beyond / M. Akian,S. Gaubert, A.

Guterman // Contemporary Mathematics, AMS. — 2009. —Vol. 495. — P. 1–38.10728. Golan J. S. Semirings and affine equations over them: theory and applications/ J. S. Golan. — Springer Science and Business Media, 2003. — 250 p.29. Butkovič P.

Характеристики

Список файлов диссертации

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее