Диссертация (1150622), страница 18
Текст из файла (страница 18)
Geophys., 23, 1391-1403. (2005)10065. Runov A., Sergeev V.A., Nakamura R., Baumjohann W. et al. Local structure of themagnetotail current sheet: 2001 Cluster observations // Ann. Geophys., 24, 247-262. (2006)66. Russell, C. T., and R. L. McPherron, Semiannual variation of geo-magnetic activity // J.Geophys.
Res., 78 ,92108 (1973)67. Schindler K. A self-consistent theory of the tail of the magnetosphere, in Earth's Magnetospheric Processes // Ed. by B. M. McComas. Astrophys. a. Space Science Library. V. 32.1972. P. 200.68. Schindler, K., and J. Birn, Models of two-dimensional embedded thin current sheets fromVlasov theory // J. Geophys. Res., 107(A8), 1193, (2002) doi:10.1029/2001JA000304.69. Semenov, V.S., D.I.
Kubyshkina, M.V. Kubyshkina, I.V. Kubyshkin, N. Partamies, On thecorrelation between the fast solar wind ow changes and substorm occurrence// Geophys.Res. Lett., (2015) DOI: 10.1002/2015GL06480670. Sergeev V., Runov A., Baumjohann W., Nakamura R. et al. Current sheet apping motionand structure observed by Cluster // Geophys. Res.
Lett., 30, 1327, (2003) doi:10.1029/2002GL016500.71. Sergeev V., Runov A., Baumjohann W., Nakamura R. et al. Orientation and propagation ofcurrent sheet oscillations // Geophys. Res. Lett., 30(L05807), (2004) doi:10.1029/2003GL019346.72. Sergeev V.A.,. Runov A.V, Baumjohann W., Nakamura R. et al. Cluster results on themagnetotail current sheet structure and dynamics // ESA SP, 598, P9.2 (2006)73. Sergeev V.
A., Sormakov D. A.,. Apatenkov S. V, et al. Survey of large-amplitude appingmotions in the midtail current sheet // Ann. Geophys., 24, 2015-2024 (2006)74. Sergeev, V.A., V. Angelopoulos, and R. Nakamura, Recent advances in understanding substormdynamics // Geophysical Research Letters, Vol.39, L05101, (2012) doi:10.1029/2012GL05085975. Sharma, A. S., Nakamura, R., Runov, A., Grigorenko, E. E., Hasegawa, H., Hoshino, M.,Louarn, P., Owen, C. J., Petrukovich, A., Sauvaud, J.-A., Semenov, V. S., Sergeev, V.
A., Zelenyi, L. M., Fruit, G., Haaland, S., Malova, H., andSlavin, J. A., Sonnerup, B. U. O.,Snekvik, K., Transient and localized processes in the magnetotail: a review // Ann. Geophys.,26, 955-1006, doi:10.5194/angeo-26-955-2008, 200810176. Shay, M.A., J.F. Drake, B.N. Rogers, R.E.
Denton The scaling of collisionless, magneticreconnection for large systems // Geophys. Res. Lett., 26, 2163-2166 (1999)77. Shen, C., et al., Analyses on the geometrical structure of magnetic eld in the current sheetbased on Cluster measurements // J. Geophys. Res., 108(A5), 1168, doi:10.1029/2002JA009612,200378.
Sitnov M.I. et al. A model of the bifurcated current sheet: 2. Flapping motion // Geophys.Res. Lett., 31(L09), 805, (2004) doi:10.1029/2004GL019, 47379. Sitnov M. I., Swisdak M., Guzdar P. N., Runov A. Structure and dynamics of a new classof thin current sheets // J. Geophys. Res. 2006. Vol. 111. Iss. A8. P. 19782012.80. Sitnov, M.I. and K. Schindler, Tearing stability of a multiscale magnetotail current sheet //Geophys.Res.Lett., 37, L08102, (2010) DOI: 10.1029/2010GL04296181. Sun, W., Fu, S., Shi, Q., Zong, Q., Yao, Z., Xiao, T., Parks, G., THEMIS observation ofa magnetotail current sheet apping wave // Chin.
Sci. Bull. (2014) 59(2):154-161, doi:10.1007/ s11434-013-0056-x82. Tanskanen, E, T.I. Pulkkinen, H.E.J. Koskinen, J.A. Slavin, Substorm energy budget duringlow and high solar activity: 1997 and 1999 compared // J. Geophys. Res., VOL. 107, NO.A6,1086, doi:10.1029/2001JA900153, 200283. Tsurutani, B.T., Zhou, X.Y., Interplanetary shock triggering of substorms: Wind and Polar// Adv. Space Res., 31(4), 1063-1067, 2003, doi:10.1016/S0273-1177(02)00796-284. Tsyganenko N.
A., Modeling the Earth's magnetospheric magnetic eld conned within arealistic magnetopause // J. Geophys. Res., 100, 5599-5612, 199585. Tsyganenko, N. A., Eects of the solar wind conditions on the global magnetospheric conguration as deduced from data-based eld models // in European Space Agency PublicationESA SP-389, p.181, 199686. Tsyganenko, N.A., Data-based modelling of the Earth's dynamic magnetosphere: a review// Ann. Geophys., Vol.31, Issue 10, 1745-1772, doi:10.5194/angeo-31-1745-2013, 201387. Tsyganenko, N.A., V.A. Andreeva, and E.I. Gordeev, Internally and externally induceddeformations of the magnetospheric equatorial current as inferred from spacecraft data,Annales Geophysicae // Vol.33, Issue 1, 1-11, doi:10.5194/angeo-33-1-2015, 201510288. Volwerk M., Andre N., Arridge C. S.
et al. Comparative magnetotail apping: an overviewof selected events at Earth, Jupiter and Saturn // Ann. Geophys., 31, 817-833, (2013)doi:10.5194/angeo-31-817-201389. Voros, Z., G. Fasko, M. Khodanchenko, I. Honkonen, P. Janhunen, and M. Palmroth,Windsock memory COnditioned RAM (CO-RAM) pressure eect: Forced reconnection in theEarth's magnetotail // J.Geophys.Res. Space.Phys.,119, 6273-6293, (2014) doi:10.1002/2014JA01990. Walker, G. W. Some problems illustrating the forms of nebulae // Proc. R. Soc. London,Ser. A, 1915, 91, 410.91. Yoon P.H. and Lui A.T.Y. A class of exact two-dimensional kinetic current sheet equilibria// J.
Geophys. Res., VOL. 110, A01202, doi:10.1029/2003JA010308, 200592. Zelenyi L. M., Artemyev A. V., Petrukovich A. A. et al. Low frequency eigenmodes of thinanisotropic current sheets and Cluster observations // Ann. Geophys., 27, 861-868 (2009)93. Zelenyi L., A.Artemyev, Mechanisms of Spontaneous Reconnection: From Magnetosphericto Fusion Plasma // Space Sci.
Rev., 178:441457 (2013) doi:10.1007/s11214-013-9959-894. Zhao, H., and Q.-G. Zong, Seasonal and diurnal variation of geomagnetic activity: RussellMcPherron eectduring dierent IMF polarity and/or extreme solar wind conditions // J.Geophys. Res., 117, A11222, (2012) doi:10.1029/2012JA017845.95. Zhang T.
L., Baumjohann W., and Nakamura R. A wavy twisted neutral sheet observed byCLUSTER // Geophys.Res.Let.,29(19), 1899, (2002) doi:10.1029/2002GL015544103Ïðèëîæåíèå ýòîì ðàçäåëå ïðèâåäåíû ðàñ÷¼òíûå ôîðìóëû äëÿ ïàðàìåòðîâ òîêîâîãî ñëîÿ ïðè êîëåáàíèÿõ, íå âîøåäøèå â ãëàâó 2.Ïàðàìåòðû äëÿ ñëó÷àÿ íà÷àëüíîãî âîçìóùåíèÿ ïî ãàóññèàíó, èçãèáíàÿ ìîäà (èíäåêñ ”+ ”ñîîòâåòñòâóåò ðåøåíèþ âûøå ñëîÿ (z ≥ z0 ), à èíäåêñ ”− ” ðåøåíèþ íèæå ñëîÿ (z ≤ −z0 )):ξy (t, y, z) ==vz =vy =Bz =By =Bx =ξz± (t, y, z) =ξy± (t, y, z) =vz± (t, y, z) =vy± (t, y, z) =Bx± (t, y, z) =By± (t, y, z) =Bz± (t, y, z) =∫Reλ(k) √ − k2−[πe 4 sin[λ(k)z]]ei[ω(k)t−ky] dk =2πik∫ ∞1λ(k) − k2√e 4 cos(ω(k)t)sin(ky)sin(λz)dkkπ 0∫ ∞k21ω(k)e− 4 sin(ω(k)t)cos(ky)cos(λz)dk,−√π 0∫ ∞1λ(k)ω(k) − k2−√e 4 sin(ω(k)t)sin(ky)sin(λz)dk.kπ 0∫ ∞k2b−√λ(k)e− 4 cos(ω(k)t)cos(ky)sin(λz)dk;π 0∫ ∞ 2bλ (k) − k2√e 4 cos(ω(k)t)sin(ky)cos(λz)dk;kπ 0∫ ∞k2ae− 4 cos(ω(k)t)cos(ky)cos(λz)dk.−√π 0∫ ∞k21√ek− 4 ∓kz cos[λ(k)]cos(ky)cos[ω(k)t]dk;π 0∫ ∞k21∓√ek− 4 ∓kz cos[λ(k)]cos(ky)sin[ω(k)t]dk;π 0∫ ∞k21−√ek− 2 ∓kz cos[λ(k)]ω(k)cos(ky)sin[ω(k)t]dk;π 0∫ ∞k21∓√ek− 4 ∓kz cos[λ(k)]ω(k)cos(ky)cos[ω(k)t]dk;π 0−aξz± ;∫ ∞k2b√kek− 4 ∓kz cos[λ(k)]cos(ky)sin[ω(k)t]dk;π 0∫ ∞k2bkek− 4 ∓kz cos[λ(k)]cos(ky)cos[ω(k)t]dk,∓√π 0(56)(57)(58)(59)(60)(61)(62)(63)(64)(65)(66)(67)(68)sausage-ìîäà:ξzξy∫ ∞k21= √e− 4 cos[ω(k)t]cos(ky)sin[λ(k)z]dk;π 0∫ ∞1λ(k) − k2= −√e 4 cos[ω(k)t]sin(ky)cos[λ(k)z]dk;kπ 0104vz =vy =Bz =By =Bx =ξz± (t, y, z) =ξy± (t, y, z) =vz± (t, y, z) =vy± (t, y, z) =Bx± (t, y, z) =By± (t, y, z) =Bz± (t, y, z) =∫ ∞k21−√ω(k)e− 4 sin[ω(k)t]cos(ky)sin[λ(k)z]dk;π 0∫ ∞1λ(k)ω(k) − k2√e 4 sin[ω(k)t]sin(ky)cos[λ(k)z]dk;kπ 0∫ ∞k2b−√λ(k)e− 4 cos[ω(k)t]cos(ky)cos[λ(k)z]dk;π 0∫ ∞ 2bλ (k) − k2√e 4 cos[ω(k)t]sin(ky)sin[λ(k)z]dk;kπ 0−aξz ;∫ ∞k21±√ek− 4 ∓kz sin[λ(k)]cos(ky)cos[ω(k)t]dk;π 0∫ ∞k21−√ek− 4 ∓kz sin[λ(k)]cos(ky)sin[ω(k)t]dk;π 0∫ ∞k21∓√ek− 2 ∓kz sin[λ(k)]ω(k)cos(ky)sin[ω(k)t]dk;π 0∫ ∞k21−√ek− 4 ∓kz sin[λ(k)]ω(k)cos(ky)cos[ω(k)t]dk;π 0−aξz± ;∫ ∞k2bkek− 4 ∓kz sin[λ(k)]cos(ky)sin[ω(k)t]dk;±√π 0∫ ∞k2b−p √kek− 4 ∓kz sin[λ(k)]cos(ky)cos[ω(k)t]dk,π 0(69)Ïàðàìåòðû äëÿ ñëó÷àÿ íå÷åòíîãî íà÷àëüíîãî âîçìóùåíèÿ sin(y)Ce−a(k+1)22 y2, kink-ìîäà:(k−1)2ξz0 = e− 4 − e− 4 ;∫ ∞1ξz = √ξ 0 sin[ω(k)t]cos(ky)cos[λ(k)z]dk;π 0 z∫ ∞1λ(k) 0ξy = √ξ sin[ω(k)t]sin(ky)sin[λ(k)z]dk;k zπ 0∫ ∞1vz = √ω(k)ξz0 cos[ω(k)t]cos(ky)cos[λ(k)z]dk;π 0∫ ∞1λ(k)ω(k) 0vy = √ξz cos[ω(k)t]sin(ky)sin[λ(k)z]dk;kπ 0∫ ∞bBz = − √λ(k)ξz0 sin[ω(k)t]cos(ky)sin[λ(k)z]dk;π 0∫ ∞ 2bλ (k) 0By = √ξ sin[ω(k)t]sin(ky)cos[λ(k)z]dk;k zπ 0Bx = −aξz ;(70)Ïàðàìåòðû äëÿ ñëó÷àÿ íå÷åòíîãî íà÷àëüíîãî âîçìóùåíèÿ sin(y)Ce−a1052 y2, sausage-ìîäà:ξz =ξy =vz =vy =Bz =By =Bx =∫ ∞1√ξ 0 sin[ω(k)t]cos(ky)sin[λ(k)z]dk;π 0 z∫ ∞1λ(k) 0−√ξ sin[ω(k)t]sin(ky)cos[λ(k)z]dk;k zπ 0∫ ∞1√ω(k)ξz0 cos[ω(k)t]cos(ky)sin[λ(k)z]dk;π 0∫ ∞1λ(k)ω(k) 0−√ξz cos[ω(k)t]sin(ky)cos[λ(k)z]dk;kπ 0∫ ∞b√λ(k)ξz0 sin[ω(k)t]cos(ky)cos[λ(k)z]dk;π 0∫ ∞ 2bλ (k) 0√ξ sin[ω(k)t]sin(ky)sin[λ(k)z]dk;k zπ 0−aξz ;(71)106.