Диссертация (1150480), страница 19
Текст из файла (страница 19)
— Vol. 4. — P. 7619.120. A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, S. Roche. Charge transport in chemically doped 2D graphene // Phys. Rev. Lett. — 2008. — Vol.101. — P. 036808.121. B. Zheng, P. Hermet, L. Henrard. Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbonnanotubes // ACS Nano. — 2010.
— Vol. 4. — P. 4165.122. M. Deifallah, P.F. McMillan, F. Corá. Electronic and structural properties of two-dimensional carbon nitride graphenes // J. Phys. Chem. C. —2008. — Vol. 112. — P. 5447.123. S. Jalili, R. Vaziri. Study of the electronic properties of Li-intercalatednitrogen doped graphite // Mol. Phys. — 2011. — Vol. 109. — P. 687.124. J.
Robertson, C.A. Davis. Nitrogen doping of tetrahedral amorphous carbon // Diamond Relat. Mater. — 1995. — Vol. 4. — P. 441.125. T. Schiros, D. Nordlund, L. Pálová, D. Prezzi, L. Zhao, K.S. Kim,U. Wurstbauer, C. Gutiérrez, D. Delongchamp, C. Jaye, D. Fischer,H. Ogasawara, L.G.M. Pettersson, D.R. Reichman, P. Kim, M.S.
Hybertsen, A. N. Pasupathy. Connecting dopant bond type with electronicstructure in N-doped graphene // Nano Lett. — 2012. — Vol. 12. — P. 4025.126. M. Zhao, Y. Xia, J.P. Lewis, R. Zhang. First-principles calculations fornitrogen-containing single-walled carbon nanotubes // J. Appl. Phys. —2003. — Vol. 94. — P. 2398.127. S.H. Lim, R. Li, W. Ji, J. Lin. Effects of nitrogenation on single-walledcarbon nanotubes within density functional theory // Phys. Rev.
B. —2007. — Vol. 76. — P. 195406.128. G. Imamura, K. Saiki. Synthesis of nitrogen-doped graphene on Pt(111)by chemical vapor deposition // J. Phys. Chem. C. — 2011. — Vol. 115. —121P. 10000.129. Z. Jin, J. Yao, C. Kittrell, J.M. Tour. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets // ACS Nano. —2011. — Vol. 5. — P. 4112.130.
Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen,T. Yu, J. Lin. Pyridinic N doped graphene: Synthesis, electronic structure,and electrocatalytic property // J. Mater. Chem. — 2011. — Vol. 21. —P. 8038.131. Y. Ito, C. Christodoulou, M.V. Nardi, N. Koch, H. Sachdev, K.
Müllen.Chemical vapor deposition of N-doped graphene and carbon films: The roleof precursors and gas phase // ACS Nano. — 2014. — Vol. 8. — P. 3337.132. L. Zhao, R. He, K.T. Rim, T. Schiros, K.S. Kim, H. Zhou, C. Gutiérrez,S.P. Chockalingam, C.J. Arguello, L. Pálová, D. Nordlund, M.S. Hybertsen, D.R. Reichman, T.F. Heinz, P. Kim, A. Pinczuk, G.W. Flynn, A.N. Pasupathy. Visualizing individual nitrogen dopants in monolayer graphene //Science. — 2011. — Vol.
333. — P. 999.133. H. Wang, M. Xie, L. Thia, A. Fisher, X. Wang. Strategies on the designof nitrogen-doped graphene // J. Phys. Chem. Lett. — 2014. — Vol. 5. —P. 119.134. Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin. Nitrogen-doped grapheneand its application in electrochemical biosensing // ACS Nano. — 2010. —Vol. 4. — P. 1790.135. N. Soin, S.S.
Roy, S. Roy, K.S. Hazra, D.S. Misra, T.H. Lim, C.J. Hetherington, J.A. McLaughlin. Enhanced and stable field emission from in situnitrogen-doped few-layered graphene nanoflakes // J. Phys. Chem. C. —2011. — Vol. 115. — P. 5366.136. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.-X. Li, Q. Fu, X. Ma,Q. Xue, G. Sun, X. Bao. Toward N-doped graphene via solvothermal synthesis // Chem. Mater. — 2011. — Vol.
23. — P. 1188.122137. X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai.N-doping of graphene through electrothermal reactions with ammonia //Science. — 2009. — Vol. 324. — P. 768.138. B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong. Controllable N-doping of graphene // Nano Lett. — 2010. — Vol. 10. — P. 4975.139.
X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai. Simultaneous nitrogen doping and reduction of graphene oxide // J. Am. Chem.Soc. — 2009. — Vol. 131. — P. 15939.140. Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia.Catalyst-free synthesis of nitrogen-doped graphene via thermal annealinggraphite oxide with melamine and its excellent electrocatalysis // ACSNano. — 2011. — Vol. 5. — P. 4350.141. Y. Xue, B. Wu, L.
Jiang, Y. Guo, L. Huang, J. Chen, J. Tan, D. Geng,B. Luo, W. Hu, G. Yu, Y. Liu. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition //J. Am. Chem. Soc. — 2012. — Vol. 134. — P. 11060.142. D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide // Langmuir. — 2010. — Vol. 26. —P.
16096.143. Y.A. Kim, K. Fujisawa, H. Muramatsu, T. Hayashi, M. Endo, T. Fujimori, K. Kaneko, M. Terrones, J. Behrends, A. Eckmann, C. Casiraghi,K.S. Novoselov, R. Saito, M.S. Dresselhaus. Raman spectroscopy of borondoped single-layer graphene // ACS Nano. — 2012. — Vol. 6. — P. 6293.144. Y.-B. Tang, L.-C. Yin, Y. Yang, X.-H.
Bo, Y.-L. Cao, H.-E. Wang, W.-J.Zhang, I. Bello, S.-T. Lee, H.-M. Cheng, C.-S. Lee. Tunable band gaps andp-type transport properties of boron-doped graphenes by controllable iondoping using reactive microwave plasma // ACS Nano. — 2012. — Vol. 6. —P. 1970.123145. J. Ozaki, T. Anahara, N. Kimura, A. Oya. Simultaneous doping of boronand nitrogen into a carbon to enhance its oxygen reduction activity inproton exchange membrane fuel cells // Carbon.
— 2006. — Vol. 44. —P. 3358.146. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang,K. Storr, L. Balicas, F. Liu, P.M. Ajayan. Atomic layers of hybridized boronnitride and graphene domains // Nat. Mater. — 2010.
— Vol. 9. — P. 430.147. G. Bepete, D. Voiry, M. Chhowalla, Z. Chiguvare, N.J. Coville. Incorporation of small BN domains in graphene during CVD using methane, boricacid and nitrogen gas // Nanoscale. — 2013. — Vol. 5. — P. 6552.148. A.K. Manna, S.K. Pati. Tunable electronic and magnetic properties inB N C nanohybrids: Effect of domain segregation // J. Phys. Chem. C. —2011.
— Vol. 115. — P. 10842.149. S. Bhowmick, A.K. Singh, B.I. Yakobson. Quantum dots and nanoroadsof graphene embedded in hexagonal boron nitride // J. Phys. Chem. C. —2011. — Vol. 115. — P. 9889.150. B. Xu, Y.H. Lu, Y.P. Feng, J.Y. Lin. Density functional theory study ofBN-doped graphene superlattice: Role of geometrical shape and size // J.Appl.
Phys. — 2010. — Vol. 108. — P. 073711.151. A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M.Ajayan. Synthesis of nitrogen-doped graphene films for lithium batteryapplication // ACS Nano. — 2010. — Vol. 4. — P. 6337.152. C. Ma, X. Shao, D. Cao. Nitrogen-doped graphene nanosheets as anodematerials for lithium ion batteries: A first-principles study // J. Mater.Chem. — 2012. — Vol. 22. — P. 8911.153. H. Wang, C. Zhang, Z.
Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong,J. Yao, G. Cui. Nitrogen-doped graphene nanosheets with excellent lithiumstorage properties // J. Mater. Chem. — 2011. — Vol. 21. — P. 5430.124154. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W.Choi. Nitrogen-doped graphene for high-performance ultracapacitors andthe importance of nitrogen-doped sites at basal planes // Nano Lett. —2011. — Vol. 11.
— P. 2472.155. R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu. Nitrogen doped graphenenanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell // J. Mater. Chem. — 2010. — Vol. 20. —P. 7114.156. L. Zhang, Z. Xia. Mechanisms of oxygen reduction reaction on nitrogendoped graphene for fuel cells // J. Phys.
Chem. C. — 2011. — Vol. 115. —P. 11170.157. L. Feng, Y. Chen, L. Chen. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathodecatalyst in microbial fuel cells // ACS Nano. — 2011. — Vol. 5. — P. 9611.158. L. Qu, Y. Liu, J.-B. Baek, L. Dai.
Nitrogen-doped graphene as efficientmetal-free electrocatalyst for oxygen reduction in fuel cells // ACS Nano. —2010. — Vol. 4. — P. 1321.159. X.-K. Kong, C.-L. Chen, Q.-W. Chen. Doped graphene for metal-free catalysis // Chem. Soc. Rev. — 2014. — Vol. 43. — P. 2841.160. H.-Y. Wu, X.
Fan, J.-L. Kuo, W.-Q. Deng. DFT study of hydrogen storageby spillover on graphene with boron substitution // J. Phys. Chem. C. —2011. — Vol. 115. — P. 9241.161. G. Kim, S.-H. Jhi, N. Park. Effective metal dispersion in pyridinelike nitrogen doped graphenes for hydrogen storage // Appl. Phys. Lett. — 2008. —Vol. 92.
— P. 013106.162. Z. Ao, S. Li. Electric field manipulated reversible hydrogen storage ingraphene studied by DFT calculations // Phys. Status Solidi A. — 2014. —Vol. 211. — P. 351.125163. S. Hüfner. Photoelectron spectroscopy. — Berlin, Heidelberg: Springer,1996. — P. 518.164. J.J. Rehr, R.C. Albers. Theoretical approaches to x-ray absorption finestructure // Rev. Mod. Phys.
— 2000. — Vol. 72. — P. 621.165. J. Stöhr. NEXAFS Spectroscopy. — Berlin, Heidelberg: Springer-Verlag,1992. — P. 404.166. B. Watts, L. Thomsen, P.C. Dastoor. Methods in carbon K-edge NEXAFS:Experiment and analysis // J. Electron Spectrosc. Relat. Phenom. —2006. — Vol. 151. — P. 105.167. K.J. Rawlings, S.D.
Foulias, B.J. Hopkins. A model for carburised W(100)and W(110) // J. Phys. C: Solid State Phys. — 1981. — Vol. 14. — P. 5411.168. N.R. Avery. Oxidation of W(110): I. LEED study of the oxide formation at1000 K // Surf. Sci. — 1972. — Vol. 33. — P. 107.169. S. Lizzit, A. Baraldi. High-resolution fast X-ray photoelectron spectroscopystudy of ethylene interaction with Ir(111): From chemisorption to dissociation and graphene formation // Catal.