Диссертация (1150273), страница 16
Текст из файла (страница 16)
– 106. – P. 37-44.80.Sudo,T.Homogeneousliquid-liquidextractionmethodforspectrofluorimetric determination of chlorophyll / T. Sudo, S. Igarashi // Talanta. –1996. – 46. – P. 233-237.81. Spietelun, A. Green aspects, developments and perspectives of liquid phasemicroextraction techniques / A. Spietelun, L. Marcinkowski, M. de la Guardia, J.Namiesnik // Talanta. – 2014. – 119.
– P. 34-45.10882. Spietelun, A. Recent developments and future trends in solid phasemicroextraction techniques towards green analytical chemistry / A. Spietelun, L.Marcinkowski, M. De la Guardia, J.Namiesnik // J. Chromatogr. A. – 2013. – 1321. –P. 1–13.83.Liu,W.Continuous-FlowMicroextractionExceeding1000-FoldConcentration of Dilute Analytes / W. Liu, H. K. Lee // Anal. Chem.
– 2000. – 72. –P. 4462-4467.84. Pena, F. Immersed single-drop microextraction interfaced with sequentialinjection analysis for determination of Cr (VI) in natural waters by electrothermalatomic absorption spectrometry / F. Pena, I. Lavilla, C. Bendicho // Spectrochim.Acta B. – 2008. – 63. – P. 498–503.85. Anthemidis, A.N. Development of on-line single-drop micro-extractionsequential injection system for electrothermal atomic absorption spectrometricdetermination of trace metals / A.N.
Anthemidis, I.S.I. Adam // Anal. Chim. Acta. –2009. – 632. – P.216-220.86. Mitani, C. On-line liquid phase micro-extraction based on drop-in-plugsequential injection lab-at-valve platform for metal determination / C. Mitani, A. N.Anthemidis // Analytica Chimica Acta. – 2013. – 771. – P. 50-55.87. Kocurova, L.
Solvent microextraction: A review of recent efforts atautomation / L. Kocurova, I. S. Balogh, V. Andruch // Microchemical Journal. –2013. – 110. – P. 599-607.88.Anthemidis,A.N.On-linesequentialdispersiveliquid–liquidmicroextraction system for flame atomic absorption spectrometric determination ofcopper and lead in water samples / A.N. Anthemidis, K.-I.G. Ioannou // Talanta. –2009.
– 79. – P. 86-91.89.Anthemidis,A.N.Sequentialinjectiondispersiveliquid–liquidmicroextraction based on fatty alcohols and poly(etheretherketone)-turnings for metaldetermination by flame atomic absorption spectrometry / A.N. Anthemidis, K.-I.G.Ioannou // Talanta. –2011. – 84. – P. 1215-1220.10990. Anthemidis, A.N. Development of a sequential injection dispersive liquid–liquid microextraction system for electrothermal atomic absorption spectrometry byusing a hydrophobic sorbent material: determination of lead and cadmium in naturalwaters / A.N.
Anthemidis, K.-I.G. Ioannou // Anal. Chim. Acta. – 2010. – 668. – P.35-40.91. Andruch, V. Automated on-line dispersive liquid–liquid microextractionbased on a sequential injection system / V. Andruch, C.C. Acebal, J. Skrlikova, H.Sklenarova, P. Solich, I.S. Balogh, F. Billes, L. Kocurova // Microchem. J. – 2012. –100. – P.77-82.92. Cruz–Vera, M. One-step in-syringe ionic liquid-based dispersive liquid–liquid microextraction / M.
Cruz–Vera, R. Lucena, S. Cardenas, M. Valcarcel // J.Chromatogr. A. – 2009. – 1216. – P. 6459-6465.93. Maya, F. Completely automated in-syringe dispersive liquid– liquidmicroextraction using solvents lighter than water / F. Maya, J.M. Estela, V. Cerda //Anal.
Bioanal. Chem. – 2012. – 402. – P.1383-1388.94. Horstkotte, B. Determination of ppb-level phenol index using in-syringedispersive liquid–liquid microextraction and liquid waveguide capillary cellspectrophotometry / B. Horstkotte, F. Maya, C.M. Duarte, V. Cerda // Microchim.Acta. – 2012. – 179. – P. 91-98.95. Horstkotte, B. Automatic determination of copper by in-syringe dispersiveliquid–liquid microextraction of its bathocuproine-complex using long path-lengthspectrophotometric detection / B.
Horstkotte, M. Alexovic, F. Maya, C.M. Duarte,V. Andruch, V. Cerda // Talanta. – 2012. – 99. – P. 349-356.96. Suarez, R. Fully-automated fluorimetric determination of aluminum inseawater by in-syringe dispersive liquid–liquid microextraction using lumogallion /R. Suarez, B. Horstkotte, C.M. Duarte, V. Cerda // Anal. Chem. – 2012. – 84. – P.9462-9469.97. Maya, F. Lab in a syringe: fully automated dispersive liquid–liquidmicroextraction with integrated spectrophotometric detection / F. Maya, B.110Horstkotte, J.M. Estela, V.
Cerda // Anal. Bioanal. Chem. – 2012. – 404. – P. 909917.98. Horstkotte, B. In-syringe-stirring: A novel approach for magnetic stirringassisted dispersive liquid–liquid microextraction / B. Horstkotte, R. Suarez, P. Solich,V. Cerda // Anal. Chim. Acta. – 2013. –788. – P. 52-60.99. Suarez, R. In-syringe magnetic stirring-assisted dispersive liquid–liquidmicroextraction for automation and downscaling of methylene blue active substancesassay / R. Suarez, B.
Horstkotte, V. Cerda // Talanta. – 2014. – 130. – P. 555-560.100. J. Ruzicka. Lab-on-valve: universal microflow analyzer based on sequentialand bead injection / J. Ruzicka // Analyst. – 2000. – 125. – P. 1053-1060.101. K. Grudpan. Some recent developments on cost-effective flow-basedanalysis / K. Grudpan // Talanta. – 2004. – 64. – P. 1084-1090.102. Burakham, R. Exploiting sequential injection analysis with lab-at-valve(LAV) approach for on-line liquid–liquid micro-extraction spectrophotometry / R.Burakham, S. Lapanantnoppakhun, J. Jakmunee, K.Grudpan // Talanta.
– 2005. – 68.– P. 416-421.103. Zhao, L. Liquid-phase microextraction combined with hollow fiber as asample preparation technique prior to gas chromatography/mass spectrometry / L.Zhao, H.K. Lee // Anal. Chem. – 2002. – 74. – P. 2486-2492.104. L. Hou, L.
Dynamic three-phase microextraction as a sample preparationtechnique prior to capillary electrophoresis / L. Hou, H.K. Lee. // Anal. Chem. –2003. – 75. – P. 2784-2789.105. Pezo, D. Development of an automatic multiple dynamic hollow fibreliquid-phase microextraction procedure for specific migration analysis of new activefood packagings containing essential oils / D. Pezo, J.
Salafranca, C. Nerín // J.Chromatogr. A. – 2007. – 1174. – P. 85-94.106. Salafranca, J. Assessment of specific migration to aqueous simulants of anew active food packaging containing essential oils by means of an automatic111multiple dynamic hollow fibre liquid phase microextraction system / J. Salafranca, D.Pezo, C. Nerin // J. Chromatogr. A. – 2009. – 1216. – P. 3731-3739.107. Esrafili, A.
A novel approach to automation of dynamic hollow fiberliquid-phase microextraction / A. Esrafili, Y. Yamini, M. Ghambarian, M. Moradi, S.Seidi // J. Sep. Sci. – 2011. – 34. – P. 957-964.108. Esrafili, A. Analysis of trace amounts of chlorobenzenes in water samples:an approach towards the automation of dynamic hollow fiber liquid-phasemicroextraction / A. Esrafili, Y.
Yamini, M. Ghambarian, S. Seidi, M. Moradi //Microchim. Acta. – 2012. – 176. – P. 367-374.109. Esrafili, A. Automated preconcentration and analysis of organiccompounds by on-line hollow fiber liquid-phase microextraction–high performanceliquid chromatography / A. Esrafili, Y. Yamini, M. Ghambarian, B. Ebrahimpour // J.of Chrom.
A. – 2012. – 1262. – P. 27-33.110. Chaoa, Y. Direct determination of chlorophenols in water samples throughultrasound-assisted hollow fiber liquid–liquid–liquid microextraction on-line coupledwith high-performance liquid chromatography / Y. Chaoa, Y. Tua, Z. Jian, H.Wanga, Y. Huang // J. of Chrom. A. – 2013. – 1271. P.
41-49.111. Kocurova, L. Solvent microextraction: A review of recent efforts atautomation / L. Kocurova, I. S. Balogh, V. Andruch // Microchemical Journal. –2013.– 110. – P. 599-607.112. Bulatov, A.V. Stepwise injection spectrophotometric determination ofcysteine in biologically active supplements and fodders / A.V. Bulatov, A.V. Petrova,A.B. Vishnikin, L.N. Moskvin // Microchemical Journal. – 2013. – 110.
– P. 369373.113. Timofeeva, I. Automated procedure for determination of ammonia inconcrete with headspace single-drop micro-extraction by stepwise injectionspectrophotometric analysis / I. Timofeeva, I. Khubaibullin, M. Kamencev, A.Moskvin, A. Bulatov. // Talanta. – 2015. – 133. – P. 34-37.112114. Falkova, M. Multicommutated stepwise injection determination of ascorbicacid in medicinal plants and food samples by capillary zone electrophoresisultraviolet detection / M. Falkova, A. Bulatov, M. Pushina, A. Ekimov, G.
Alekseeva,L. Moskvin // Talanta. – 2015. – 133. – P. 82-87.115.Булатов,А.В.Циклическоеинжекционноефотометрическоеопределение аскорбиновой кислоты в лекарственных препаратах / А.В.Булатов, У.М. Страшнова, А.Б. Вишникин, Т.Д. Синева, Г.М. Алексеева, А.Л.Москвин, Л.Н.Москвин // Журнал аналитической химии. – 2011. – 66. – С. 282287.116. P. Koscielniak. Univariate calibration techniques in flow injection analysis.Anal. Chim. Acta. – 2001. – 438. – P. 323-333.117. Koscielniak, P. Calibration methods–nomenclature and classification / P.Koscielniak, J. Namiesґnik, W. Chrzanowski // New Horizons and Challenges inEnvironmental Analysis and Monitoring. – CEEAM. – Gdansk, Poland.
– 2003. – P.110-129.118. Koscielniak, P. Flow system for analytical calibration by the integratedmethod / P. Koscielniak, J. Kozak, M. Herman // Instrumentation science &technology. – 2002. – 30. – P. 251-266.119. Lopez-Garcıa, I. Automatic calibration in continuous flow analysis / I.Lopez-Garcıa, P. Vinas, M. Hernandez-Cordoba // Anal.
Chim. Acta. – 1996. – 327.– P. 83–93.120. Sperling, M. Expansion of dynamic working range and correction forinterferences in flame atomic absorption spectrometry using flow-injection gradientratio calibration with a single standard / M. Sperling, Z. Fang, and B. Welz // Anal.Chem. – 1991. – 63. – P. 151-159.121. Silva, E. C. Standard additions in flow injection analysis based on mergingzones and gradient exploitation: Application to copper determination in spirits / E. C.Silva, M. C. U.