Диссертация (1150129), страница 20
Текст из файла (страница 20)
// Electroanal. 2015. Vol. 27. No 10. P. 22752279.13860.Lakshmi D., Bossi A., Whitcombe M.J., Chianella I., Fowler S.A., SubrahmanyamS., Piletska E.V., Piletsky S.A. Electrochemical sensor for catechol and dopaminebased on a catalytic molecularly imprinted polymer-conducting polymer hybridrecognition element. // Anal.
Chem. 2009. Vol. 81. No 9. P. 3576–3584.61.Yu D., Zeng Y., Qi Y., Zhou T., Shi G. A novel electrochemical sensor fordetermination of dopamine based on AuNPs@SiO2 core-shell imprintedcomposite. // Biosens. Bioelectronics. 2012. Vol. 38. No 1.
P. 270–277.62.MutluM.M.,ErdogduG.Selectivedetectionofdopaminewithpoly(diphenylamine sulfonic acid) modified electrode in the presence of ascorbicacid. // J. Anal. Chem. 2011. Vol. 2. No 7. P. 582-588.63.Никольский Б.П. Физическая химия. Теоретическое и практическоеруководство. Л.: Химия. 1987. 880 c.64.Никольский Б. П., Матерова Е.А.
Ионоселективные электроды. Л. Химия,1980 240 с.65.Камман К. Работа с ионоселективными электродами. M. «Мир». 1980. 284 c.66.Корыта И., Штулик К. Ионоселективные электроды. М. «Мир». 1989. 268 c.67.Mikhelson K.N. Ion-selective Electrodes (Lecture Notes in Chemistry, Vol.
81).Springer. Heidelberg-New York-Dordrecht-London. 2013. 162 p.68.Bakker E., Bühlmann P., Pretsch E. Carrier-based ion-selective electrodes andbulk optodes. 1. General characteristics. // Chem. Rev. 1997. Vol. 97. No 8. P.3083 - 3132.69.Bakker E., Bühlmann P., Pretsch E. Carrier-based ion-selective electrodes andbulk optodes.
2. Ionophores for potentiometric and optical sensors. // Chem. Rev.1998.Vol. 98. No. 4. P. 1593-1687.70.Михельсон К.Н. Электрохимические сенсоры на основе ионофоров:современное состояние, тенденции, и перспективы // Росc. хим. журн. (Ж.Рос. хим. об-ва им. Д.И. Менделеева). 2008. Т. 52. № 2. С. 30-36.71.Михельсон К.Н., Пешкова М.А. Химические сенсоры на основе ионофоров:достижения и перспективы. Успехи химии. 2015. Т.
84 № 6. C. 555-578.72.http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152_L10652_80417_11962990_-113973.Мейтис Л. Введение в курс химического равновесия и кинетики. М.: Мир.1984. 267 с.74.Mattinen U., Bobacka J., Lewenstam A. Solid‐Contact Reference ElectrodesBased on Lipophilic Salts. //Electroanal. 2009.
Vol. 21. No. 17‐18. P. 1955-1960.75.Anastasova-Ivanova S., Mattinen U., Radu A., Bobacka J., Lewenstam A.,Migdalski J., Danielewski M., Diamond D. Development of miniature all-solidstate potentiometric sensing system. //Sens. and Actuators B: Chem. 2010. Vol.146. No.
1. P. 199-205.76.Sandblom J. P., Eisenman G., Walker Jr J. L. Electrical phenomena associatedwith the transport of ions and ion pairs in liquid ion-exchange membranes. I. Zerocurrent properties. // J. of Phys. Chem. 1967. Vol. 71. No. 12. P. 3862-3870.77.Duan B.K., Zhang J., Bohn P.W. Conductance-Based Chemical Sensing inMetallic Nanowires and Metal-Semiconductor Nanostructures. // Anal. Chem.2012.
Vol. 84. No. 1. P. 2–8.78.Xu B., He H., Tao N.J. Controlling the Conductance of Atomically Thin MetalWires with Electrochemical Potential. // J. Am. Chem. Soc. 2002. Vol. 124. No.45. P. 13568-13575.79.Penner R.M. Chemical sensing with nanowires. // Annu. Rev. Anal. Chem. 2012.Vol. 5. No. 4. P. 461-485.80.Tobin R.G. Mechanisms of adsorbate-induced surface resistivity––experimentaland theoretical developments.
// Surf. Sci. 2002. Vol. 502–503 No. 3. P. 374–387.81.Lipkowski J., Stolberg L. Molecular adsorbtion at gold and silver electrodes, in: J.Lipkowski, P.N. Ross (Eds.), Adsorption of molecules at Metal electrodes, VCH,Weinheim, Cambridge, 1992 171-238.82.Fuchs K., Wills H.H. The conductivity of thin metallic films according to theelectron theory of metals.
// Proc. Cambridge Phyl. Soc. 1938. Vol. 34. No. 2. P.100-108.83.Sondheimer E.H. The mean free path of electrons in metals. // Adv. in Physics.1952. Vol. 1. No. 1. P. 1-42.84.Persson B.N.J. Surface resistivity and vibrational damping in adsorbed layers. //Phys. Rev. B. 1991. Vol. 44. No. 7. P. 3277-3296.14085.Persson B.N.J.
Applications of surface resistivity to atomic scale friction, to themigration of "hot" adatoms, and to electrochemistry. // J. Chem. Phys. 1993. Vol.98. No. 2. P. 1659-1672.86.Ibanez F.J., Zamborini F.P. Chemiresistive Sensing with Chemically ModifiedMetal and Alloy Nanoparticles. // Small 8. 2012. Vol. 8. No. 2.
P. 174–202.87.Murray R.W. Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, andNanopores. // Chem. Rev. 2008. Vol. 108. No. 7. P. 2688–2720.88.Zabet-Khosousi A., Dhirani A.-A. Charge Transport in Nanoparticle Assemblies.// Chem. Rev. 2008. Vol.
108. No. 10. P. 4072–4124.89.Saha K., Agasti S.S., Kim C., Li X., Rotello V.M. Gold Nanoparticles in Chemicaland Biological Sensing. // Chem. Rev. 2012. Vol. 112. No. 5. P. 2739−2779.90.Cooper J.S., Raguse B., Chow E., Hubble L., Müller K.-H., Wieczorek L. GoldNanoparticle Chemiresistor Sensor Array that Differentiates between HydrocarbonFuels Dissolved in Artificial Seawater. // Anal. Chem. 2010. Vol.
82. No. 9. P.3788–3795.91.Hubble L.J., Chow E., Cooper J.S., Webster M., Müller K.-H., Wieczorek L.,Raguse B. Gold nanoparticle chemiresistors operating in biological fluids. Lab.Chip. 2012. Vol. 12 No. 17. P. 3040–3048.92.Kochmann S., Hirsch T., Wolfbeis O.S. Graphenes in chemical sensors andbiosensors. // Trends in Anal. Chem. 2012. Vol. 39. No. 2. P. 87-113.93.Liu J., Liu Z., Barrow C.J., Yang W. Molecularly engineered graphene surfacesfor sensing applications. // Analyt. Chim. Acta.
2015. Vol. 859. No. 1. P. 1–19 .94.Myers M., Cooper J., Pejcic B., Baker M., Raguse B., Wieczorek L.Functionalized graphene as an aqueous phase chemiresistor sensing material. //Sens. Actuators B: Chem. 2011. Vol. 155. No. 1. P. 154–158.95.Shu J.H., Wikle H.C., Chin B.A. Passive chemiresistor sensor based on iron (II)phthalocyanine thin films for monitoring of nitrogen dioxide. // Sens. Actuators B:Chem. 2010.
Vol. 148. No. 2. P. 498–503.96.Tlili C., Myung N.V., Shetty V., Mulchandani A. Label-free, chemiresistorimmunosensor for stress biomarker cortisol in saliva. // Biosens. andBioelectronics. 2011. Vol. 26. No. 11. P. 4382– 4386.14197.Shirsat M.D., Sarkar T., Kakoullis J., Myung N.V., Konnanath B., Spanias A.,Mulchandani A. Porphyrin-Functionalized Single-Walled Carbon NanotubeChemiresistive Sensor Arrays for VOCs. // J.
Phys. Chem. C. 2012. Vol. 116. No.5. P. 3845−3850.98.Randeniya L.K., Martin P.J., Bendavid A., McDonnell J. Ammonia sensingcharacteristics of carbon-nanotube yarns decorated with nanocrystalline gold. //Carbon. 2011. Vol. 49. No. 15. P. 5265–5270.99.Yang X., Li L., Zhao Y. Ag/AgCl-decorated polypyrrole nanotubes and theirsensory properties. // Synth. Metals. 2010. Vol. 160. No.
17-18. P. 1822–1825.100.Tlili C., Cella L.N., Myung N.V., Shetty V., Mulchandani A. Single-walledcarbon nanotube chemoresistive label-free immunosensor for salivary stressbiomarkers. // Analyst. 2010. Vol. 135. No. 10. P. 2637–2642.101.Lange U., Mirsky V.M. Chemiresistors based on conducting polymers: A reviewon measurement techniques. // Analyt. Chim. Acta. 2011. Vol. 687. No. 2.
P. 105–113.102.Srinives S., Sarkar T., Hernandez R., Mulchandani A. A miniature chemiresistorsensor for carbon dioxide. Analyt. Chim. Acta. 2015. Vol. 874. No. 1. P. 54–58.103.Jeong H.-M., Kim H.-J., Rai P., Yoon J.-W., Lee J.-H. Cr-doped Co3O4 nanorodsas chemiresistor for ultraselective monitoring of methyl benzene. // Sens.Actuators B Chem. 2014. Vol.
201. No. 3. P. 482–489.104.Sahin S., Altun S., Altindal A., Odabas Z. Synthesis of novel azo-bridgedphthalocyanines and their toluene vapour sensing properties. // Sens. Actuators BChem. 2015. Vol. 206. No. 5. P. 601–608.105.Tlili C., Badhulika S., Tran T.-T., Lee I., Mulchandani A. Affinity chemiresistorsensor for sugars. // Talanta. 2014. Vol. 128. No.
3. P. 473–479.106.Cooper J.S., Myers M., Chow E., Hubble L.J., Cairney J.M., Pejcic B., Müller K.H., Wieczorek L., Raguse B. Performance of graphene, carbon nanotube, and goldnanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons inwater. // J Nanopart. Res.
2014. Vol. 16. No. 17. P. 2173-2178.107.Kong J., Franklin N. R., Zhou C., Chapline M.G., Peng S., Cho K., Dai H.Nanotube Molecular Wires as Chemical Sensors. // Science. 2000. Vol. 287. No.6. P. 622-625.142108.Walter E. C., Penner R. M., Liu H., Ng K.H., Zach M. P., Favier F. Sensors fromelectrodeposited metal nanowires. // Surf. Interface Anal. 2002. Vol. 34. No. 1.
P.409-412.109.Stern E., Klemic J. F., Routenberg D. A., Wyrembak P. N., Turner-Evans D. B.,Hamilton A. D., LaVan D. A., Fahmy T. M., Reed M. A. Label-freeimmunodetection with CMOS-compatible semiconducting nanowires. // Nature.2007. Vol. 445. No. 3. P. 519-522.110.Wang B., Zhu L. F., Yang Y. H., Xu N. S., Yang G. W. Fabrication of a SnO2Nanowire Gas Sensor and Sensor Performance for Hydrogen. // J. Phys.
Chem. C.2008. Vol. 112. No. 17. P. 6643-6647.111.Engel Y., Elnathan R., Pevzner A., Davidi G., Flexer E., Patolsky F.Supersensitive Detection of Explosives by Silicon Nanowire Arrays. // Angew.Chem. Int. Ed. 2010. Vol. 49. No. 38. P. 6830-6835..112.Yu R., Pan C., Wang Z. L. High performance of ZnO nanowire protein sensorsenhanced by the piezotronic effect. // Energy Environ. Sci. 2013. Vol.