Диссертация (1150129), страница 19
Текст из файла (страница 19)
268 p.17.KhattarR.,MathurP.1-(Pyridin-2-ylmethyl)-2-(3-(1-(pyridin-2-ylmethyl)benzimidazol-2-yl) propyl) benzimidazole and its copper(II) complex as a newfluorescent sensor for dopamine (4-(2-aminoethyl)benzene-1,2-diol). // Inorg.Chem. Comm. 2013. Vol. 31. No 1.
P. 37–43.18.Mao Y., Bao Y., Han D., Li F., Niu L. Efficient one-pot synthesis of molecularlyimprinted silica nanospheres embedded carbon dots for fluorescent dopamineoptosensing. // Biosens. and Bioelectron. 2012. Vol. 38. No 1. P. 55–60.19.Tao Y., Lin Y., Ren J., Qu X. A dual fluorometric and colorimetric sensor fordopamine based on BSA-stabilized Au nanoclusters. // Biosens.
Bioelectronics.2013. Vol. 42. No 1. P. 41–46.20.Zhang J., Chen X., Hu Z., Ma X. Quantification of noradrenaline and dopamine inPortulaca oleracea L. by capillary electrophoresis with laser-induced fluorescencedetection. // Anal. Chim. Acta. 2002. Vol 471. No 2. P. 203–209.21.Berzas Nevado J.J., Lemus Gallego J.M., Buitrago Laguna P. Spectrophotometricdetermination of dopamine and methyldopa with metaperiodate by flow injectionanalysis. // Fres. J. Anal. Chem. 1995. Vol. 300.
No 2. P. 221–223.22.Н.М.Холошенко,ионоселективныйС.С.электродРясенский,дляИ.П.определенияГорелов,дофаминаТвердофазный//Химико-фармацевтический журнал, 2006. Т. 40. Вып. 6ю С. 44-46.23.Yin T., Qin W. Potentiometric Determination of Dopamine Using a Solid-ContactPolymeric Membrane Ion-Selective Electrode. // Sensor Lett.
2013.Vol. 11. No 3.P. 607-612.24.Montenegro M.C.B.S.M., Sales M.G.F. Flow-injection analysis of dopamine ininjections with a periodate-selective electrode. // J. Pharm. Sci. 2000. Vol. 89. No7. P. 876–884.13425.Wolyniec E., Wysocka M., Pruszynski M., Kojo A. Batch and flow-injectiondetermination of catecholamines using ion selective electrodes. // Instrum. Sci. andTechnol. 2007.
Vol. 35. No 3. P. 241–253.26.Kurzatkowska K., Dolusic E., Dehaen W., Sieron-Stoltny K., Sieron A., RadeckaH. Gold electrode incorporating corrole as an ion-channel mimetic sensor fordetermination of dopamine. // Anal. Chem. 2009. Vol. 81. No . P. 7397–740527.Nikoleli G.-P., Nikolelis D.P., Evtugyn G., Hianik T. Advances in lipid film basedbiosensors. // Trends in Anal. Chem. 2016. Vol. 79. No 1. P.
210–221.28.Zhou M., Zhai Y., Dong S. Electrochemical sensing and biosensing platformbased on chemically reduced graphene oxide. // Anal. Chem. 2009. Vol. 81. No14. P. 5603–5613.29.Liu Q., Zhu X., Huo Z., He X., Liang Y., Xu M. Electrochemical detection ofdopamine in the presence of ascorbic acid using PVP/graphene modifiedelectrodes. // Talanta. 2012.
Vol. 97. No 5. P. 557–562.30.Wang Y., Peng W., Liu L., Tang M., Gao F., Li M. Enhanced conductivity of aglassy carbon electrode modified with a graphene-doped film of layered doublehydroxides for selectively sensing of dopamine. // Microchim. Acta. 2011. Vol.174. No 1. P. 41-46.31.Li S.-J., He J.-Z., Zhang M.-J., Zhang R.-X., Lu X.-L., Li S.-H., Pang H.Electrochemical detection of dopamine using water-soluble sulfonated graphene. //Electrochim. Acta 2013. Vol.
102. No 1. P. 58-65.32.Zeng Y., Zhou Y., Kong L., Zhou T., Shi G. A novel composite of SiO2-coatedgraphene oxide and molecularly imprinted polymers for electrochemical sensingdopamine. // Biosens. and Bioelectron. 2013. Vol. 45. No 1. P. 25–33.33.Cheemalapati S., Palanisamy S., Mani V., Chen S.-M. Simultaneouselectrochemical determination of dopamine and paracetamol on multiwalledcarbonnanotubes/grapheneoxidenanocomposite-modifiedglassy carbonelectrode. // Talanta. 2013. Vol. 117.
No 2. P. 297–304.34.Liu X., Xie L., Li H. Electrochemical biosensor based on reduced graphene oxideand Au nanoparticles entrapped in chitosan/silica sol-gel hybrid membranes for135determination of dopamine and uric acid. // J. Electroanal. Chem. 2012. Vol. 682.No 2. P.
158–163.35.Liu, X.; Zhu, H.; Yang, X. An electrochemical sensor for dopamine based onpoly(o-phenylenediamine)functionalizedwithelectrochemicallyreducedgraphene oxide. // RSC Adv. 2014. Vol. 4. No 8. P. 3706–3712.36.Yang L., Liu D., Huang J., You T. Simultaneous determination of dopamine,ascorbic acid and uric acidat electrochemically reduced graphene oxide modifiedelectrode // Sens. Actuators B Chem.
2014. Vol. 193. No 2. P. 166-172.37.Niu X., Yang W., Guo H., Ren J., Yang F., Gao J. A novel and simple strategy forsimultaneous determination of dopamine, uric acid and ascorbic acid based on thestacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode. //Talanta. 2012. Vol. 99. No 7. P. 984–988.38.Zhang Y., Yuan R., Chai Y., Zhong X., Zhong H. Carbon nanotubes incorporatedwith sol-gel derived La(OH)3 nanorods as platform to simultaneously determineascorbic acid, dopamine, uric acid and nitrite. // Colloids and Surfaces B:Biointerf. 2012. Vol. 100. No 1. P. 185– 189.39.Ensafi A.A., Arashpour B., Rezaei B., Allafchian A.R.
Voltammetric behavior ofdopamine at a glassy carbon electrode modified with NiFe2O4 magneticnanoparticles decorated with multiwall carbon nanotubes. // Mater. Sci. Eng. C.2014. Vol. 39. No 1. P. 78–85.40.Mazloum-Ardakani M., Khoshroo A. High performance electrochemical sensorbased on fullerene-functionalized carbon nanotubes/ionic liquid: Determination ofsome catecholamines. // Electrochem. Comm. 2014. Vol. 42. No 1. P. 9–12.41.Yu D., Zeng Y., Qi Y., Zhou T., Shi G. A novel electrochemical sensor fordetermination of dopamine based on AuNPs@SiO2 core-shell imprintedcomposite.
// Biosens. and Bioelectron. 2012. Vol. 38. No1. P. 270–277.42.R. Ojani, J.‐B. Raoof, A.A. Maleki, S. Safshekan. Simultaneous and sensitivedetection of dopamine and uric acid using a poly(L‐methionine)/gold nanoparticle‐modified glassy carbon electrode. // Chinese J. Catalysis. 2014.
Vol. 35. No 3. P.423–429.43.Evtugyn G.A., Shamagsumova R.V., Sitdikov R.R., Stoikov I.I., Antipin I.S.,Ageeva M.V., Hianik T. Dopamine Sensor Based on a Composite of Silver136Nanoparticles Implemented in the Electroactive Matrix of Calixarenes. //Electroanal. 2011. Vol. 23. No. 10. P. 2281 – 2289.44.Sanghavi B.J., Mobin S.M., Mathur P., Lahiri G. K., Srivastava A.K. Biomimeticsensor for certain catecholamines employing copper(II) complex and silvernanoparticle modified glassy carbon paste electrode. // Biosens Bioelec. 2013.Vol.
39. No 1. P. 124–132.45.Dos Santos M.P., Rahim A., Fattori N., Kubota L.T., Gushikem Y. Novelamperometric sensor based on mesoporous silica chemically modified with ensalcopper complexes for selective and sensitive dopamine determination. // Sens. andActuators B: Chem. 2012. Vol. 171– 172.
No 4. P. 712–718.46.Voronin O. G., Hartmann A., Steinbach C., Karyakin A.A., Khokhlov A.R., KranzC. Prussian Blue-modified ultramicroelectrodes for mapping hydrogen peroxide inscanning electrochemical microscopy (SECM). // Electrochem. Comm. 2012. Vol.23. No 1. P. 102–105.47.Karyakin A.A., Principles of direct (mediator free) bioelectrocatalysis. //Bioelectrochem.
2012. Vol. 88. No 2. P. 70–75.48.SitnikovaN.A.,MokrushinaA.V.,KaryakinA.A.Irontriad-matehexacyanoferrates as Prussian Blue stabilizers: Toward the advanced hydrogenperoxide transducer. // Electrochim. Acta. 2014. Vol. 122. No 2. P. 173– 179.49.Sitnikova N.A., Komkova M.A., Khomyakova I.V., Karyakina E.E., KaryakinA.A.
Transition Metal Hexacyanoferrates in Electrocatalysis of H2O2Reduction:An Exclusive Property of Prussian Blue. // Anal. Chem. 2014. Vol. 86. No 9. P.4131–4134.50.Kemmegne-Mbouguen J.C., Angnes L., Mouafo-Tchinda E., Ngameni E.Electrochemical Determination of Uric Acid, Dopamine and Tryptophan at ZincHexacyanoferrate Clay Modified Electrode. // Electroanalysis. 2015. Vol. 27. No1. P. 1 – 13.51.Magdesieva T.V., Dolganov A.V., Yakimansky A.V., Goikhman M.Ya.,Podeshvo I.V., Kudryavtsev V.V.
New Cu(I) complexes with biquinolylcontaining polymer ligands as electrocatalysts for O2 activation in the oxidation ofalcohols. // Electrochim. Acta. 2008. Vol. 53. No 11. P. 3960–3972.13752.Magdesieva T.V., Dolganov A.V., Yakimansky A.V., Goikhman M.Ya.,Podeshvo I.V. New Cu(I) complexes with 2,2′-biquinolyl and 2,2′-quinolylpyridine containing polymer ligands as electrocatalysts for O2 activation in theoxidation of aliphatic amines. // Electrochim. Acta. 2009.
Vol. 54. No 5. P. 1444–1451.53.Zhou Y., Zhang H., Xie H., Chen B., Zhang L., Zheng X, Jia P. A novel sensorbased on LaPO4 nanowires modified electrode for sensitive simultaneousdetermination of dopamine and uric acid. // Electrochem. Acta. 2012. Vol. 75.
No2. P. 360-365.54.Zhou Y., Zhang H., Zhang J., Liu T., Tang W. Electrochemically sensitivedetermination of dopamine and uric acid based on poly (beryllon II)/nanowiresLaPO4 modified carbon paste electrode. // Sens. and Actuators B: Chem. 2013.Vol. 182. No 4. P. 610–617.55.Beitollahi H., Hamzavi M., Torkzadeh-Mahani M., Shanesaz M., Maleh H.K. ANovel Strategy for Simultaneous Determination of Dopamine and Uric AcidUsing a Carbon Paste Electrode Modified with CdTe Quantum Dots.
//Electroanal. 2015. Vol. 27. No 2. P. 524 – 533.56.Balasoiu S.C., Staden R.I.S.V., van Staden J.F., Pruneanub S., Radu G.-L. Carbonand diamond paste microelectrodes based on Mn(III) porphyrins for thedetermination of dopamine. // Anal. Chim. Acta. 2010. Vol. 668. No 2. P. 201–207.57.Ping J., Wu J., Wang Y., Ying Y. Simultaneous determination of ascorbic acid,dopamine and uric acid using high-performance screen-printed grapheneelectrode. // Biosens.
and Bioelectron. 2012. Vol. 34. No 1. P. 70– 76.58.Buleandra M., Rabinca A.A., Mihailciuc C., Balan A., Nichita C., Stamatin I.,Ciucu A.A. Screen-printed Prussian Blue modified electrode for simultaneousdetection of hydroquinone and catechol. // Sens. Actuators B. Chem. 2014. Vol.203. No 6. P. 824–832.59.Rabinca A.A., Buleandra M., Balan A., Stamatin I., Ciucu A.A. ElectrochemicalBehaviour and Rapid Determination of L-Dopa at Electrochemically PretreatedScreen Printed Carbon Electrode.