Диссертация (1150129), страница 21
Текст из файла (страница 21)
6. No. 5. P.494-499.113.Kisner A., Heggen M., Mayer D., Simon U., Offenhäusser A., Mourzina Y.Probing the effect of surface chemistry on the electrical properties of ultrathin goldnanowire sensors. // Nanoscale. 2014. Vol. 6. No. 10. P. 5146-5155.114.Lin H.-Y., Chen H.-A., Lin H.-N. Fabrication of a Single Metal NanowireConnected with Dissimilar Metal Electrodes and Its Application to ChemicalSensing. // Anal. Chem. 2008. Vol. 80. No. 6. P. 1937-1941.115.Liu Z., Searson P.C. Single Nanoporous Gold Nanowire Sensors. // J.
Phys. Chem.B. 2006. Vol. 110. No. 9. P. 4318-4322.116.Yang F., Donavan K.C., Kung S.-C., Penner R.M. The Surface Scattering-BasedDetection of Hydrogen in Air Using a Platinum Nanowire. // Nano Lett. 2012.Vol. 12. No. 6. P. 2924−2930.117.Li X., Liu Y., Hemminger J.C., Penner R.M.
Catalytically Activated Palladiumand Platinum Nanowires for Accelerated Hydrogen Gas Detection. // ACS NANO.2015. Vol. 9. No. 3. P. 3215–3225.118.Mulchandani A., Myung N.V. Conducting polymer nanowires-based label-freebiosensors. // Current Opinion in Biotechn. 2011. Vol. 22. No. 4.
P. 502–508.143119.Zhou Y., Zhang H., Xie H., Chen B., Zhang L., Zheng X., Jia P. A novel sensorbased on LaPO4 nanowires modified electrode for sensitive simultaneousdetermination of dopamine and uric acid. // Electrochim. Acta. 2012. Vol. 75. No.2. P. 360–365.120.Roy A., Pandey T., Ravishankar N., Singh A.K. Semiconductor-like Sensitivity inMetallic Ultrathin Gold Nanowire-Based Sensors.
// J. Phys. Chem. C. 2014. Vol.118. No. 32. P. 18676−18682.121.Finklea H.O. Electrochemistry of organized monolayers of thiols and relatedmolecules on electrodes, in A.J. Bard, I. Rubinstein (Eds.) ElectroanalyticalChemistry. A series of advances, V. 19, Marcel Dekker, Inc. 1996.
P. 110-337.122.Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., Whitesides G.M. SelfAssembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. //Chem. Rev. 2005. Vol. 105. No. 4. P. 1103-1169.123.Белюстин А.А., Булатов М.И., Дробышев А.И., Ермаков С.С., КалинкинИ.П.,МосквинЛ.Н.,НемецВ.М.,СеменовВ.Г.,ЯкимоваН.М.Аналитическая химия, методы идентификации и определения веществ. //Изд.
Центр «Академия». 2008. Т. 1. 575 с.124.Bard A.J., Faulkner L.R. Electrochemical Methods, Fundamentals andApplications, 2-nd edition. // Wiley, New York-Chichester-Weinheim-BrisbaneSingapore-Toronto, 2001, 833 p.125.Плэмбек Д. Электрохимические методы анализа, основы теории иприменения. // М.: «Мир». 1985. 504 с.126.Карцова Л. А., Краснова И. Н., Пименов А. И. Анализ нейротрансмиттерныхаминокислот и биогенных аминов методом ВЭЖХ в присутствии краунэфиров в подвижной фазе // Журн. Аналит. Химии. 1996. Т. 51. С. 1068-1073.127.Tucceri R.I., Posadas D. A surface conductance study of the anion adsorption ongold.
// J Electroanal. Chem. 1981. Vol. 191. No. 4. P. 387-399.128.Stolberg L., Richer J., Lipkowski J., Irish D.E. Adsorption of pyridine at thepolycrystalline gold-solution interface. // J. Electroanal. Chem. 1986. Vol. 207.No. 3. P. 213-234.144129.Zelenay P., Rice-Jackson L.
M., Wieckowski A. Adsorption of pyridine onpolycrystalline gold electrode studied by radioactive-labeling method. //Langmuir. 1990. Vol. 6. No. 8. P. 974-979.130.Chandni U., Kundu P., Singh A.K., Ravishankar N., Ghosh A. Insulating State andBreakdown of Fermi Liquid Description in Molecular-Scale Single-CrystallineWires of Gold. // ACS Nano. 2011. Vol. 5. No.
10. P. 8398-8403.131.Halder A., Ravishankar N. Ultrafine Single-Crystalline Gold Nanowire Arrays byOriented Attachment. // Adv. Mater. 2007. Vol. 19. No. 12. P. 1854-1858.132.Link S., Mohamed M. B., El-Sayed M. A. Simulation of the Optical AbsorptionSpectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect ofthe Medium Dielectric Constant.
// J. Phys. Chem. B. 1999. Vol. 103. No. 22. P.3073-3077.133.Pud S., Kisner A., Heggen M., Belaineh D., Temirov R., Simon U., OffenhöusserA., Mourzina Y., Vitusevich S. Features of Transport in Ultrathin Gold NanowireStructures. // Small. 2012. Vol. 9. No. 6. P. 846-852.134.Lu Y., Huang J. Y., Wang C., Sun S., Lou J. Cold welding of ultrathin goldnanowires. // Nature Nanotech.
2010. Vol. 5. No. 2. P. 218 – 224.135.Wu Y., Yang P. Melting and welding semiconductor nanowires in nanotubes. //Adv. Mater. 2001. Vol. 13. No. 4. P. 520-523.136.Clavilier J., Huong N.V. Étuide de la structure de la couche double sur lesélectrodes d'or. // Electroanal.Chem. Interfacial Electrochem. 1973.
Vol. 41. No. 2P. 193-199.137.Zachek M.K., Hermans A., Wightman R.M., McCarty G.S. ElectrochemicalDopamine Detection: Comparing Gold and Carbon Fiber Microelectrodes usingBackground Subtracted Fast Scan Cyclic Voltammetry. // J. Electroanal.
Chem.2008. Vol. 614. No. 1-2. P. 113-120.138.Nikolaev K, Ermakov S, Ermolenko Y, Averyaskina E, Offenhäusser A, MourzinaY. A novel bioelectrochemical interface based on in situ synthesis of goldnanostructures on electrode surfaces and surface activation by Meerwein’s salt. Abioelectrochemical sensor for glucose determination. // Bioelectrochem. 2015.Vol. 105. No. 1. P. 34-43.145139.Roy A, Pandey T., Ravishankar N., Singh A.K. Single crystalline ultrathin goldnanowires: Promising nanoscale interconnects.
// AIP Adv. 2013. Vol. 3. P.032131-1-032131-7.140.Song J.H., Wu Y., Messer B., Kind P., Yang P. Metal Nanowire Formation UsingMo3Se3- as Reducing and Sacrificing Templates. // J. Am. Chem. Soc. 2001. Vol.123. No. 42. P. 10397-10398.141.Bowden F.P., Agar J.N. General and physical chemistry. 5: Irreversible electrodeprocess. // Ann. Rep. Chem. Soc. 1938. Vol. 35. No. 1.
P. 90-113.142.Scholz F. 2nd ed. Electroanalytical methods. Springer, Berlin, Heidelberg. 2010349 p.143.Brown E.R., Smith D.E., Booman G.L. A Study of Operational AmplifierPotentiostats Employing Positive Feedback for IR Compensation 1. TheoreticalAnalysis of Stability and Bandpass Characteristics.// Anal. Chem. 1968. Vol. 40.No.
9. P. 1411-1423.144.Feldberg S.W. Effect of uncompensated resistance on the cyclic voltammetricresponse of an electrochemically reversible surface-attached redox couple:Uniform current and potential across the electrode surface.// J. Electroanal. Chem.2008. Vol. 624. No. 1. P. 45-51.145.Langley D.P., Lagrange M., Giusti G., Jiménez C., Bréchet Y., Nguyen N.D.,Bellet D. Metallic nanowire networks: effects of thermal annealing on electricalresistance.
// Nanoscale. 2014. Vol. 6. No. . P. 13535-13543.146.Plieth W.J. Electrochemical Properties of Small Clusters of Metal Atoms andTheir Role in the Surface Enhanced Raman Scattering. // J. Phys. Chem. 1982.Vol. 86. No. 24. P. 3166-3170.147.Li Y., Cox J.T., Zhang B. Electrochemical Responses and Electrocatalysis atSingle Au Nanoparticles. // J. Am. Chem. Soc.
2010. Vol. 132. No. 10. P. 30473054.148.Liu X., Stroppa D.G., Heggen M., Ermolenko Y., Offenhäusser A., Mourzina Y.Electrochemically Induced Ostwald Ripening in Au/TiO2 Nanocomposite. // J.Phys. Chem. C 2015. Vol. 119. No. 27. P. 10336–10344.149.Khaligh H.H., Goldthorpe I.A. Failure of silver nanowire transparent electrodesunder current flow. // Nanoscale Res. Lett. 2013. Vol. 8.
No. 3. P. 235-231.146150.Fangohr H., Chernyshenko D.S., Franchin M., Fischbacher T., Meier G. Jouleheating in nanowires. // Phys. Rev. B. 2011. Vol. 84. No. 054437. P. 1-12.151.Popp E. Energy dissipation and transport in nanoscale devices. // Nano Res. 2010.Vol. 3. No. 2. P. 147-169.152.Scharifker B.R. Diffusion to ansembles of microelectrodes.
// J. Electroanal.Chem. 1988. Vol. 240. No. 1. P. 61-76.153.Tyagi P., Postetter D., Saragnese D.L., Randall C.L., Mirski M.A., Gracias D.H.Patternable Nanowire Sensors for Electrochemical Recording of Dopamine. //Anal. Chem. 2009. Vol. 81. No. 24. P. 9979-9984.154.Dickinson T., Sutton P.R. The study of adsorption by measurement of electroderesistance. // Electrochim. Acta. 1974. Vol. 19. No. 3. P. 427-435.155.Mercante L.A., Pavinatto A., Iwaki L E.
O., Scagion V.P., Zucolotto V., OliveiraO.N., Jr., Mattoso L.H.C., Correa D.S. Electrospun Polyamide 6/Poly(allylaminehydrochloride)NanofibersFunctionalizedwithCarbonNanotubesforElectrochemical Detection of Dopamine. // ACS Appl. Mater. Interfaces. 2015.Vol.
7. No. 12. P. 4784−4790.156.Cai W., Lai T., Du H., Ye J. Electrochemical determination of ascorbic acid,dopamine and uricacid based on an exfoliated graphite paper electrode: Ahighperformance flexible sensor. // Sens. Actuat. B Chem. 2014. Vol. 193. No. 3.P. 492– 500.157.Wang J., Pedrero M., Sakslund H., Hammerich O., Pingarron J. Electrochemicalactivation of screen-printed carbon strips // Analyst. 1996. Vol.
121. No. 3. P 345–350.158.Cui G., Yoo J. H., Lee J. S., Yoo J., Uhm J. H., Cha G. S., Nam H. Effect of pretreatment on the surface and electrochemical properties of screen-printed carbonpaste electrodes // Analyst. 2001. Vol. 126. P. 1399–1403.147.