Диссертация (1150011), страница 19
Текст из файла (страница 19)
– V.377. – P.8998.67.Shao, Z. G. Hybrid Nafion-inorganic oxides membrane doped withheteropolyacids for high temperature operation of proton exchange144membrane fuel cell / Z. G. Shao [et al.] // Solid state ionics. – 2006. –V.177. – P.779-785.68.Tricoli, V. Zeolite-Nafion composites as ion conducting membranematerials / V. Tricoli [et al.] // Electrochimica Acta. – 2003. – V.48.
–P.2625-2633.69.Chen,Z.Nafion/ZeoliteNanocompositeMembranebyinSituCrystallization for a Direct Methanol Fuel Cell / Z. Chen [et al.] //Chemistry of Materials. – 2006. – V.18. – P.5669-5675.70.Holmberg, B. Nanocomposite fuel cell membranes based on Nafion andacid functionalized zeolite beta nanocrystals / B. Holmberg [et al.] //Journal of Membrane Science. – 2008. – V.320.
– P.86-92.71.Baglio, V. Zeolite-based composite membranes for high temperature directmethanol fuel cells / V. Baglio [et al.] // Journal of AppliedElectrochemistry. – 2005. – V.35. – P.207-212.72.Rhee, C. H. Nafion/Sulfonated Montmorillonite Composite: A NewConcept Electrolyte Membrane for Direct Methanol Fuel Cells / C. H.Rhee [et al.] // Chemistry of Materials. – 2005.
– V.17. – P.1691-1697.73.Azimi,M.MethanolCrossoverandSelectivityofNafion/Heteropolyacid/Montmorillonite Nanocomposite Proton ExchangeMembranes for DMFC Applications / M. Azimi [et al.] // Iranian Journalof Chemical Engineering. – 2017. – V.14. – P.65-81.74.Gerasimova, E. Electrocatalytic and transport properties of hybrid Nafionmembranes doped with silica and cesium acid salt of phosphotungstic acidin hydrogen fuel cells / E. Gerasimova [et al.] // Chemical EngineeringJournal.
– 2016. – V.305. – P.121-128.75.Prapainainar, P. Mordenite/Nafion and Analcime/Nafion CompositeMembranes Prepared by Spray Method for Improved Direct Methanol FuelCell Performance / P. Prapainainar [et al.] // Applied Surface Science. –2017. – V.421. – P.24-41.14576.Ozden, A. Evaluation of sulfonated polysulfone/zirconium hydrogenphosphate composite membranes for direct methanol fuel cells / A. Ozden[et al.] // Electrochimica Acta. – 2017.
– V.256. – P.196-210.77.Beauger, C. Improvement of Nafion-sepiolite composite membranes forPEMFC with sulfo-fluorinated sepiolite / C. Beauger [et al.] // Journal ofMembrane Science. – 2015. – V.495. – P.392-403.78.Tasaki, K. Fullerene composite proton conducting membranes for polymerelectrolyte fuel cells operating under low humidity conditions / K.
Tasaki[et al.] // Journal of Membrane Science. – 2006. – V.281. – P.570-580.79.Tasaki, K. Fabrication and characterization of fullerene-Nafion compositemembranes / K. Tasaki [et al.] // Polymer. – 2007. – V.48. – P. 4438-4448.80.Wang, H. Fabrication of new fullerene composite membranes and theirapplication in proton exchange membrane fuel cells / H. Wang [et al.] //Journal of Membrane Science. – 2007. – V.289. – P.277-283.81.Rambabu, G. Functionalized fullerene embedded in Nafion matrix: Amodified composite membrane electrolyte for direct methanol fuel cells /G. Rambabu [et al.] // Chemical Engineering Journal.
– 2016. – V.306. –P.43-52.82.Kannan, R. Polymer Electrolyte Fuel Cells Using Nafion-Based CompositeMembranes with Functionalized Carbon Nanotubes / R. Kannan [et al.] //Angewandte Chemie International Edition. – 2008. – V.47. – P.2653-2656.83.Lee, H. K. Functionalized Carbon Nanotube Dispersion in a NafionComposite Membrane for Proton Exchange Membrane Fuel cellApplications / H. K.
Lee [et al.] // Journal of Nanoelectronics andOptoelectronics. – 2011. – V.6. – P.357-362.84.He, G. Functionalized Carbon Nanotube via Distillation PrecipitationPolymerizationandItsApplicationinNafion-BasedCompositeMembranes / G. He [et al.] // ACS Applied Materials & Interfaces. – 2014.– V.6. – P.15291-15301.14685.Cele, N. P.
Carbon Nanotubes Based Nafion Composite Membranes forFuel Cell Applications / N. P. Cele [et al.] // Fuel Cells. – 2010. – V.10. –P.64-71.86.Prikhno, I. A. MF-4SC Hybrid Membranes Doped with Carbon NanotubesFunctionalized with Proton-Acceptor Groups / I. A. Prikhno [et al.] //Nanotechnologies in Russia. – 2017. – V.12. – P.236-242.87.Ijeri, V. Nafion and carbon nanotube nanocomposites for mixed proton andelectron conduction / V. Ijeri [et al.] // Journal of Membrane Science. –2010.
– V.363. – P.265-270.88.Iijima, S. Helical Microtubules of Graphitic Carbon / S. Iijima // Nature. –1991. – V.354. – P.56-58.89.Дьячков, П.Н. Углеродные нанотрубки: строение, свойства,применения / П. Н. Дьячков – М.: БИНОМ. Лаборатория знаний,2006. – 293 с.90.Раков, Э. Г. Нанотрубки и фуллерены: Учебное пособие / Э.
Г. Раков– М.: Университетская книга. Логос, 2006. – 376 с.91.Kumar, M. Chemical Vapor Deposition of Carbon Nanotubes: A Reviewon Growth Mechanism and Mass Production / M. Kumar [et al.] // Journalof Nanoscience and Nanotechnology. – 2010. – V.10. – P.3739-3758.92.Nagaraju, N. Alumina and silica supported metal catalysts for theproduction of carbon nanotubes / N. Nagaraju [et al.] // Journal ofMolecular Catalysis A: Chemical.
– 2002. – V.181. – P.57-62.93.Seo, J. W. Behaviour of transition metals catalysts over laser-treatedvanadium support surfaced in the decomposition of acetylene / J. W. Seo[et al.] // Applied Catalysis A: General. – 2004. – V.260. – P.87-91.94.Lee, C. J. Catalyst effect on carbon nanotubes synthesized by thermalchemical vapor deposition / C. J. Lee [et al.] // Chemical Physics Letters. –2002. – V.360. – P.250-255.14795.Lee, C. J. Carbon nanotubes produced by tungsten-based catalyst usingvapor phase deposition method / C.
J. Lee [et al.] // Chemical PhysicsLetters. – 2002. – V.361. – P.469-472.96.Du, C. CVD growth of carbon nanotubes directly on nickel substrate / C.Du [et al.] // Materials Letters. – 2005. – V.59. – P.1678-1682.97.Cho, Y.-S. Carbon nanotube synthesis using a magnetic fluid via thermalchemical vapor deposition / Y.-S. Cho [et al.] // Journal of Crystal Growth.– 2002. – V.243. – P.224-229.98.Ding, D.
Y. Ni-Ni3P alloy catalyst for carbon nanostructures / D. Y. Ding[et al.] // Chemical Physics Letters. – 2003. – V.371. – P.333-336.99.Fonseca, A. Synthesis of single- and multi-wall carbon nanotubes oversupported catalysts / A. Fonseca [et al.] // Applied Physics A: MaterialsScience & Processing. – 1998.
– V.67. – P.11-22.100. Mazumder, S. In situ CCVD synthesis of carbon nanotubes within zeolitecrystal coated porous ceramic foam / S. Mazumder [et al.] // Journal of theCeramic Society of Japan. – 2015. – V.6. – P.480-484.101. Steiner, S. A. Iron-Doped Carbon Aerogels: Novel Porous Substrates forDirect Growth of Carbon Nanotubes / S. A. Steiner [et al.] // Langmuir. –2007.
– V.23. – P.5161-5166.102. Gournis, D. Catalytic synthesis of carbon nanotubes on clay minerals / D.Gournis [et al.] // Carbon. – 2002. – V.40. – P.2641-2646.103. Zhu, J. A catalytic chemical vapor deposition synthesis of double-walledcarbon nanotubes over metal catalysts supported on mesoporous material /J.
Zhu [et al.] // Chemical Physics Letters. – 2003. – V.380. – P.496-502.104. Hernadi, K. On the role of catalyst, catalyst support and their interaction insynthesis of carbon nanotubes by CCVD / K. Hernadi [et al.] // Materials,Chemistry and Physics.
– 2002. – V.77. – P.536-541.105. Shah, K. A. Synthesis of carbon nanotubes by catalytic chemical vapordeposition: A review on carbon sources, catalysts and substrates / K. A.148Shah [et al.] // Materials Science in Semiconductor Processing. – 2016. –V.41. – P.67-82.106. Jodin, L. Influence of the catalyst type on the growth of carbon nanotubesvia methane chemical vapor deposition / L.
Jodin [et al.] // The Journal ofPhysical Chemistry B. – 2006. – V.110. – P.7328-7333.107. Zhao, W. Carbon nanotube formation using zeolite template andapplications / W. Zhao [et al.] // Journal of Advanced Ceramics. – 2012. –V.1. – P.179-193.108. Rashid, H. U.
Catalyst role in chemical vapor deposition (CVD) process: areview / H. U. Rashid [et al.] // Reviews on Advanced Materials Science. –2015. – V.40. – P.235-248.109. Klinke, C. Comparative study of the catalytic growth of patterned carbonnanotube films / C. Klinke [et al.] // Surface science. – 2001. – V.1. –P.195-201.110. Bacsaa, R. R. High specific surface area carbon nanotubes from catalyticchemical vapor deposition process / R. R. Bacsaa [et al.] // ChemicalPhysics Letters. – 2000. – V.323. – P.566-571.111. Choi, G. S.
Mass production of carbon nanotubes using spin-coating ofnanoparticles / G. S. Choi [et al.] // Microelectronic Engineering. – 2003. –V.66. – P.77-82.112. Раков, Э. Г. Углеродные нанотрубки в новых материалах / Э. Г. Раков// Успехи химии. – 2013. – Т.82, Вып.1. – С.27-47.113. Bingel, C. Cyclopropanierung von Fullerenen / C. Bingel // ChemischeBerichte. – 1993. – V.126. – P.1957-1959.114. Yu, C. Novel Water-soluble Hexa(sulfobutyl)fullerenes as Potent FreeRadical Scavengers / C.
Yu [et al.] // Chemistry Letters. – 1998. – V.27. –P.465-466.115. Андрианов, К. А. Методы элементоорганической химии. Кремний / К.А. Андрианов – М.: Наука, 1967. – 702 с.149116. Camps, X. Efficient cyclopropanation of C60 starting from malonates / X.Camps [et al.] // Journal of the Chemical Society, Perkin Transactions 1. –1997. – V.11. – P.1595-1596.117.
Бебрис, Н. К. Получение чистого макропористого кремнеземааэросила адсорбента для газовой хроматографии / Н. К. Бебрис [и др.]// Коллоидный журнал. – 1967. – Т.29, Вып.3. – С.326-332.118. Лисичкин, Г. В. Химия привитых поверхностных соединений / Г. В.Лисичкин [и др.] – М.: ФИЗМАТЛИТ, 2003. – 592 с.119. Ермаков, Ю. И.