Диссертация (1149847), страница 17
Текст из файла (страница 17)
68. – P.186-198.34.Heil T. Chaos Synchronization and Spontaneous Symmetry-Breaking inSymmetrically Delay-Coupled Semiconductor Lasers / T. Heil, I. Fischer, W.Elsässer, J.Mulet, C. R. Mirasso // Physical Review Letters. – 2001. – Vol. 86. – № 5. – P.795-798.35.Masoller C. Anticipation in the Synchronization of Chaotic SemiconductorLasers with Optical Feedback / C. Masoller // Physical Review Letters. – 2001. – Vol.86.
– № 13. – P.2782-2785.36.Tartwijk G. H. M. Laser instabilities: a modern perspective / G. H. M. vanTartwijk, G. P. Agrawal // Progress in Quantum Electronics. – 1998. – Vol. 22. – № 2. –P.43-122.37.Annovazzi-Lodi V. Chaos and locking in a semiconductor laser due toexternal injection / V. Annovazzi-Lodi, S. Donati, M. Manna // IEEE Journal ofQuantum Electronics. – 1994. – Vol. 30. – P.1537-1541.38.Simpson T. B.
Period doubling route to chaos in a semiconductor lasersubject to optical injection / T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M.Alsing // Applied Physics Letters. – 1994. – Vol.64. – P.3539-3541.39.Simpson T. B. Nonlinear dynamics induced by external optical injection insemiconductor lasers / T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai // Quantum andSemiclassical Optics. – 1997.
– Vol.9. – P.765-784.40.WieczorekS.The103dynamicalcomplexityofopticallyinjectedsemiconductor lasers / S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra //Physics Reports. – 2005. – Vol. 416. – P.1-128.41.Erneux T. Laser Dynamics / T. Erneux and P. Glorieux – 2010. –Cambridge : Cambridge University Press – 376 p.42.Adler R. Study of Locking Phenomena in Oscillators / R. Adler //Proceedings of the IEEE.
– 1973. – Vol.61 – № 10. – P.1380-1385.43.Kobayashi S. Single-mode operation of 500 Mbit/s modulated AlGaAssemiconductor laser by injection locking / S. Kobayashi, J. Yamada, S. Machida, T.Kimura // Electronics Letters. – 1980. – Vol. 16 – № 19. – P. 746-748.44.Lang R. Injection locking properties of a semiconductor laser / R. Lang //IEEE Journal of Quantum Electronics. – 1982.
– Vol. 18 – P. 976-983.45.Petitbon I. Locking bandwidth and relaxation oscillations of aninjection-locked semiconductor laser / I. Petitbon, P. Gallion, G. Debarge, C. Chabran //IEEE J. Quantum Electron. – 1988. – Vol. – 24. – № 2. – P. 148-154.46.Chow W. Theory of line narrowing and frequency selection in an injectionlocked laser / W. Chow // IEEE Journal of Quantum Electronics.
– 1983. – Vol. 19 – №2– P. 243-249.47.Haken H. Analogy between higher instabilities in fluids and lasers / H.Haken // Physics Letters A. – 1975. – Vol. 53 – № 1. – P. 77-78.48.Sacher J., Intensity instabilities of semiconductor lasers under currentmodulation, external light injection, and delayed feedback / J. Sacher, D. Baums,P. Panknin, W. Elsässer, E.O. Göbel // Phys. Rev. A. – 1992. – Vol.
45 – № 3. –P. 1893-1905.49.Lee E-K Bistability and chaos in an injection-locked semiconductor laser /E-K Lee, H-B Pang, J-D Park, H. Lee // Phys. Rev. A. – 1993. – Vol. 47 – № 1. –P. 736-739.50.Kovanis V. Instabilities and chaos in optically injected semiconductorlasers / V. Kovanis, A. Gavrielides, T.B. Simpson, J.M. Liu // Appl. Phys. Lett.
– 1993.– Vol. 67 – № 19. – P. 2780-2782.51.104Simpson T.B. Period-doubling cascades and chaos in a semiconductor laserwith optical injection / T.B. Simpson, J.M. Liu, A. Gavrielides, V. Kovanis, P.M.Alsing // Phys. Rev. A. – 1995. – Vol. 51 – № 5. – P. 4181-4185.52.Erneux T. Mechanism for period-doubling bifurcation in a semiconductorlaser subject to optical injection / T. Erneux, V. Kovanis, A.
Gavrielides, P.M. Alsing,Phys. Rev. A. – 1996. – Vol. 53 – № 6. – P. 4372-4380.53.Agrawal G. P. Line narrowing in a single mode injection laser due toexternal optical feedback / G. P. Agrawal // IEEE Journal of Quantum Electronics. –1984. – Vol. 20. – P.468-471.54.Tartwijk G. H. M. Semiconductor lasers with optical injection andfeedback / G. H. M. van Tartwijk, D. Lenstra // Quantum and Semiclassical Optics. –1995. – Vol.7. – P.87-143.55.Lenstra D.
Coherence Collapse in Single-Mode Semiconductor Lasers Dueto Optical Feedback / D. Lenstra, B. Verbeek, A. Den Boef // IEEE Journal of QuantumElectronics. – 1985. – Vol. 21. – № 6. – P. 674 – 679.56.Tromborg B. Stability Analysis for a Semiconductor Laser in an ExternalCavity / B. Tromborg, J. Osmundsen, H. Olesen // IEEE Journal of QuantumElectronics. – 1984. – Vol.
20. – № 69. – P. 1023-1032.57.Sano T. Antimode dynamics and chaotic itinerancy in the coherencecollapse of semiconductor lasers with optical feedback / T. Sano // Physical Review A.– 1994. – Vol.50. – № 3. – P. 2719-2726.58.Tykalewicz B. Emergence of resonant mode-locking via delayed feedbackin quantum dot semiconductor lasers / B.Tykalewicz, D.Goulding, S.
P.Hegarty, G.Huyet, T.Erneux, B. Kelleher, E.А.Viktorov // Optics Express. – 2016. – Vol. 24. – №4. – P. 4239-4246.59.Ikuma Y. Dynamics in a compound cavity semiconductor laser induced bysmall external-cavity-length change / Y. Ikuma, and J. Ohtsubo // IEEE Journal ofQuantum Electronics. – 1998. – Vol. 34. – № 7.
– P. 1240-1246.60.105Masoller C. Stability and modulation properties of semiconductor laserwith weak optical feedback from a distant reflector / C. Masoller, and N. B. Abraham //Quantum and Semiclassical Optics. – 1998. – Vol.10. – P.519-534.61.O’Brien D. Sensitivity of quantum-dot semiconductor lasers to opticalfeedback / D. O’Brien, S. P. Hegarty, G. Huyet, A.
V. Uskov // Optics Letters – 2004. –Vol. 29. – P.1072-1074.62.Hodgkin A. L. A quantitative description of membrane current and itsapplication to conduction and excitation in nerve / A. L. Hodgkin and A. F. Huxley //Journal of Physiology – 1952. – Vol. 117. – P. 500-544.63.FitzHugh R. Mathematical models of threshold phenomena in the nervemembrane / R. FitzHugh // The bulletin of mathematical biophysics. – 1955. – Vol. 17.– № 4. – P. 257–278.64.Davidenko J.M. Stationary and drifting spiral waves of excitation inisolated cardiac muscle / J.M.
Davidenko, A.V. Pertsov, R. Salomonsz, W. Baxter, J.Jalife // Nature. – 1992. – Vol. 355. – № 4736. – P. 349–351.65.Izhikevich E. Which Model to Use for Cortical Spiking Neurons? /E.Izhikevich // IEEE Transactions on Neural Networks. – 2004. – Vol. 15. – № 5. – P.1063-1070.66.Winfree A. T. The Geometry of Biological Time / A.
T. Winfree. – 1980. –New York: Springer. – 779 p.67.Wieczorek S. Multipulse excitability in a semiconductor laser with opticalinjection / S.Wieczorek, B. Krauskopf, D. Lenstra // Physical Review Letters. – 2002. –Vol. 88. – № 6. – P. 063901.68.Krauskopf B. Excitability and self-pulsations near homoclinic bifurcationsin semiconductor laser systems / B. Krauskopf, K. Schneider, J.
Sieber, S.Wieczorek,M.Wolfrum // Optics Communications. – 2003. – Vol. 215. –P. 367–379.69.Wünsche H. J. Excitability of a Semiconductor Laser by a Two-ModeHomoclinic Bifurcation / H. J. Wünsche, O. Brox, M. Radziunas, F. Henneberger //Physical Review Letters. – 2001. – Vol. 88.
– №2. – P. 023901.70.106Piwonski T. Delay-induced excitability / T. Piwonski, J. Houlihan, T.Busch, G. Huyet // Physical Review Letters. – 2005. – Vol. 95. – №4. – P. 40601.71.Eguia M.C. Distribution of interspike times in noise-driven excitablesystems / M.C. Eguia and G.B.Mindlin // Physical Review E. – 2000.
– Vol. 61. – №6.– P. 6490–6499.72.Lindner B. Effects of noise in excitable systems / B. Lindner, J. Garcia-Ojalvo, A. Neimand, L. Schimansky-Geier // Physics Reports. – 2004. – Vol. 392. –№6. – P. 321-424.73.KuznetsovYu.Saddle-nodebifurcation/Yu.Kuznetsov//Scholarpedia. – 2006. – Vol. 1. – №10. – P. 1859.74.Hurtado A. Controllable spiking patterns in long-wavelength vertical cavitysurface emitting lasers for neuromorphic photonics systems / A. Hurtado, J.
Javaloyes //Applied Physics Letters – 2015. – Vol. 107. – P. 241103.75.Hurtado A. Optical neuron using polarization switching in a 1550 nm-VCSEL / A. Hurtado, I. D. Henning, M. J. Adams // Optics Express – 2010. – Vol. 18. –P.25170–25176.76.Hurtado A. Investigation of vertical cavity surface emitting laser dynamicsfor neuromorphic photonic systems / A. Hurtado, K. Schires, I.
D. Henning, and M. J.Adams // Applied Physics Letters – 2012. – Vol. 100. – P. 103703.77.Eguia M.C. Distribution of interspike times in noise-driven excitablesystems / M.C. Eguia, G.B.Mindlin // Physical Review E. – 2000. – Vol. 61. – №10. –P. 6490–6499.78.Pikovsky A.S. Coherence resonance in a noise-driven excitable system /A.S. Pikovsky and J. Kurths. Physical Review Letters. –1997. – Vol.78.















