Диссертация (1149591), страница 17
Текст из файла (страница 17)
669.[56] Ãîðáàòîâ À. Ì. Êâàíòîâàÿ òåîðèÿ íóêëîííûõ ñèñòåì. Òâåðü:Òâåðñêîéãîñ. óí-ò, 1999.[57] Âàðøàëîâè÷ Ä. À., Ìîñêàëåâ À. Í., Õåðñîíñêèé Â. Ê. Êâàíòîâàÿ òåîðèÿóãëîâîãî ìîìåíòà. Ìîñêâà:Íàóêà, 1975.[58] Harper E. P., Kim Y. E., Tubis A. Faddeev equations for realisticthree-nucleon systems. Complete angular momentum reduction andantisymmetrization of states // Phys. Rev.
C. 1970. Vol. 2. P. 877.121[59] Þöèñ À. Ï., Ñàâóêèíàñ À. Þ. Ìàòåìàòè÷åñêèå îñíîâû òåîðèè àòîìà.Âèëüíþñ: Ìèíòèñ, 1972.[60] Biedenharn L. C., Louck J. D. Angular momentum in quantum physics.Reading: AddisonWesley, 1981.[61] Áðàóí Äæ. Å., Äæåêñîí À. Ä. Íóêëîí-íóêëîííûå âçàèìîäåéñòâèÿ.Ì.:Àòîìèçäàò, 1979.[62] Ðóäíåâ Â. À., ßêîâëåâ Ñ. Ë. Î ëîæíûõ ðåøåíèÿõ óðàâíåíèé Ôàääååâà// ßäåðíàÿ ôèçèêà. 1995. Ò.
58. Ñ. 1762.[63] Ëàíäàó Ë. Ä., Ëèôøèö Å. Ì. Êâàíòîâàÿ ìåõàíèêà. Ìîñêâà:Íàóêà, 1974.[64] Abramowitz M. and Stegun I. A. Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables. New-York:Dover, 1972.[65] Ñèìîíîâ Þ. À. Çàäà÷à òðåõ òåë. Ïîëíàÿ ñèñòåìà óãëîâûõ ôóíêöèé //ßäåðíàÿ ôèçèêà.
1966. Ò. 3. Ñ. 630.[66] Macek J. Properties of autoionizing states of He // J. Phys. B:At. Mol. Opt. Phys. 1968. Vol. 1. P. 831.[67] Mead C. A., Truhlar D. G. Conditions for the denition of a strictly diabaticelectronic basis for molecular systems // J. Chem. Phys. 1982. Vol. 77. P.6090.[68] Macek J. Long-range couplings in the adiabatic hyperspherical basis //Phys. Rev. A. 1985.
Vol. 31. P. 2162.[69] Cavagnero M., Zhen Z., Macek J. Two-body fragmentation channels of threebody systems // Phys. Rev. A. 1990. Vol. 41. P. 1225.[70] Sun J. Q., Lin C. D. Diabatic states in the avoided crossing region //J. Phys. B: At. Mol.
Opt. Phys. 1992. Vol. 25. P. 1363.122[71] Kvitsinsky A. A., Kostrykin V. V. Quantum threebody scattering problemin the adiabatic hyperspherical representation // J. Math. Phys. 1991. Vol.32. P. 2802.[72] Ñìèðíîâ Â. È. Êóðñ âûñøåé ìàòåìàòèêè. Òîì 2. Ìîñêâà:Íàóêà, 1974.[73] Morse P. M., Feshbach H. Methods of Theoretical Physics. NewYork:McGraw-Hill, 1953.[74] Glockle W. Three-body breakup: Asymptotic behavior // Phys.
Rev. C.1988. Vol. 37. P. 6.[75] Ôåäîðþê Ì. Â. Ìåòîä ïåðåâàëà. Ìîñêâà:Íàóêà, 1977.[76] Spanier J., Oldham K. B. An atlas of functions. Berlin:Springer-Verlag,1987.[77] Ãîäóíîâ Ñ. Ê., Ðÿáåíüêèé Â. Ñ. Ââåäåíèå â òåîðèþ ðàçíîñòíûõ ñõåì.Ìîñêâà:Ôèçìàòãèç, 1962.[78] Çåíêåâè÷ Î., Ìîðãàí Ê. Êîíå÷íûå ýëåìåíòû è àïïðîêñèìàöèÿ.Ìîñêâà:Ìèð, 1986.[79] Prenter P. M. Splines and variational methods. New York:Wiley, 1989.[80] Khramtsov E.
S., Belov P. A., Grigoryev P. S., Ignatiev I. V., Verbin S. Yu.,Emov Yu. P., Eliseev S. A., Lovtcius V. A., Petrov V. V., Yakovlev S. L.Radiative decay rate of excitons in square quantum wells: Microscopicmodeling and experiment // J. Appl. Phys. 2016. Vol. 119. P. 184301.[81] Press W. H., Teukolsky S. A., Vetterling W.
T., Flannery B. P. NumericalRecipes: The Art of Scientic Computing. New-York:Cambridge UniversityPress, 2007.123[82] Kolganova E. A., Motovilov A. K., Soanos S. A. Three-body congurationspace calculations with hard-core potentials // J. Phys. B. 1998. Vol. 31. P.1279.[83] Balslev E., Combes J.
M. Spectral properties of many-body Schrodingeroperators with dilatation-analytic interactions // Comm. Math. Phys. 1971.Vol. 22. P. 280.[84] McCurdy C. W., Baertschy M., Rescigno T. N. Solving the three-bodyCoulomb breakup problem using exterior complex scaling // J. Phys. B:At. Mol.
Opt. Phys. 2004. Vol. 37. P. R137.[85] Ìàð÷óê Ã. È. Ìåòîäû âû÷èñëèòåëüíîé ìàòåìàòèêè. Ìîñêâà:Íàóêà,1989.[86] Douglas C. C., Haase G., Langer U. A Tutorial on Elliptic PDE Solvers andtheir parallelization. Philadelphia:SIAM, 2003.[87] Ñàìàðñêèé À. À., Íèêîëàåâ Å. Ñ. Ìåòîäû ðåøåíèÿ ñåòî÷íûõ óðàâíåíèé.Ìîñêâà:Íàóêà, 1978.[88] Hockney R. W. The potential calculation and some applications // Meth.Comput. Phys. 1970. Vol. 9, P. 136.[89] Wang H. H. A parallel method for tridiagonal equations // ACM Trans.Math. Software.
1981. Vol. 7. P. 170.[90] Âîëîõîâà À. Â., Çåìëÿíàÿ Å. Â., Ðèõâèöêèé Â. Ñ. Ïàðàëëåëüíàÿ îïòèìèçàöèÿ ìåòîäà ðåøåíèÿ ñèñòåìû óðàâíåíèé ïîëÿðîíà ñ èñïîëüçîâàíèåìàëãîðèòìà ðàçáèåíèé // Âû÷èñëèòåëüíûå ìåòîäû è ïðîãðàììèðîâàíèå.2015. Ò. 16. C. 281.[91] Lawrie D., Sameh A. The computation and communication complexity of a124parallel banded system solver // ACM Trans. Math. Software. 1984. Vol. 10.P. 185.[92] Korneev V. G., Langer U.
DirichletDirichlet Domain DecompositionMethods for Elliptic Problems. Singapore:World Scientic, 2015.[93] Ãóðüåâà ß. Ë., Èëüèí Â. Ï., Ïåðåâîçêèí Ä. Â. Àëãåáðî-ãåîìåòðè÷åñêèåè èíôîðìàöèîííûå ñòðóêòóðû ìåòîäîâ äåêîìïîçèöèè îáëàñòè // Âû÷èñëèòåëüíûå ìåòîäû è ïðîãðàììèðîâàíèå. 2016.
Ò. 17. Ñ. 132.[94] Ortega J. M. Introduction to parallel and vector solution of linear systems,New-York:Springer, 1988.[95] Cleary A., Dongarra J. J. Implementation in ScaLAPACK of divide-andconquer algorithms for banded and tridiagonal linear systems // ReportNo. UT-CS-97-358 (LAWN No. 125), Utah:University of Tennessee, 1997.[96] Johnsson S. L. Solving narrow banded systems on ensemble architectures// ACM Trans. Math. Software. 1985. Vol. 11. P. 271.[97] Belov P. A., Nugumanov E. R., Yakovlev S. L. Computing binaryscattering and breakup in three-body system // Nuclear Theory inthe Supercomputing Era. Khabarovsk: Pacic National University, 2013.P. 121134.[98] Áåëîâ Ï.
À., Íóãóìàíîâ Å. Ð., ßêîâëåâ Ñ. Ë. Ñòðåëîâèäíàÿ äåêîìïîçèöèÿ äëÿ áëî÷íî-òðåõäèàãîíàëüíîé ÑËÀÓ // Ñóïåðêîìïüþòåðíûå äíè âÐîññèè: Òð. ìåæäóíàðîäíîé êîíô. (28-29 ñåíòÿáðÿ 2015 ã., ã. Ìîñêâà).Ì.:Èçä-âî ÌÃÓ, 2015. Ñ. 447452.[99] Àêèìîâà Å. Í., Áåëîóñîâ Ä. Â., Ìèñèëîâ Â. Å. Àëãîðèòìû ðåøåíèÿîáðàòíûõ ãåîôèçè÷åñêèõ çàäà÷ íà ìíîãîïðîöåññîðíûõ âû÷èñëèòåëüíûõñèñòåìàõ // Ñèá. æóðí. âû÷èñë.
ìàòåì. 2013. Ò. 16. C. 107121.125[100] Terekhov A. V. A fast parallel algorithm for solving block-tridiagonalsystems of linear equations including the domain decomposition method// Parallel Computing. 2013. Vol. 39. P. 245.[101] Ñîëîâüåâ Ñ. À. Ðåøåíèå ðàçðåæåííûõ ñèñòåì ëèíåéíûõ óðàâíåíèé ìåòîäîì Ãàóññà ñ èñïîëüçîâàíèåì òåõíèêè àïïðîêñèìàöèè ìàòðèöû ìàëîãîðàíãà // Âû÷èñëèòåëüíûå ìåòîäû è ïðîãðàììèðîâàíèå.
2014. Ò. 15. Ñ.441.[102] Belov P. A., Nugumanov E. R., Yakovlev S. L. Decompositionmethod for block-tridiagonal matrix systems // Ïðåïð. arXiv:1505.06864.Ithaca:Cornell University, 2015.[103] Ñàìàðñêèé À. À., Ãóëèí À. Â. ×èñëåííûå ìåòîäû, Ì.: Íàóêà, 1989.[104] Dongarra J. J., et al. LINPACK Users' Guide, Philadelphia:SIAM, 1979.[105] AndersonE.,etal.LAPACKUsers'Guide.1999.URL: http://www.netlib.org/lapack/lug/ (äàòà îáðàùåíèÿ 01.06.2015).[106] Thomas L. H. Elliptic problems in linear dierence equations over a network// Watson Sci.
Comput. Lab. Rept. New-York:Columbia University, 1949.[107] Amestoy R., Du I. S., L'Excellent J.-Y. Multifrontal parallel distributedsymmetric and unsymmetric solvers // Comput. Methods Appl. Mech. Eng.2000. Vol. 184. P. 501.[108] Schenk O., Gartner K. Solving Unsymmetric Sparse Systems of LinearEquations with PARDISO // Journal of Future Generation ComputerSystems. 2004. Vol. 20. P.
475.[109] Intel MKL PARDISO Solver. 2015.URL:https://software.intel.com/en-us/node/470282 (äàòà îáðàùåíèÿ: 6ìàðòà 2016).126[110] Áåëîâ Ï. À., ßêîâëåâ Ñ. Ë. Íîâûé àñèìïòîòè÷åñêèé ïîäõîä ê ïðîáëåìåòðåõ÷àñòè÷íîãî ðàçâàëà // Âåñòíèê ÑÏáÃÓ. Ñåðèÿ 4: Ôèçèêà, Õèìèÿ. 2010. Ò.
55, 2. Ñ. 9598.[111] Áåëîâ Ï. À., ßêîâëåâ Ñ. Ë. Èñïîëüçîâàíèå óðàâíåíèé Ôàääååâà äëÿèññëåäîâàíèÿ ïðîöåññîâ nd-ðàññåÿíèÿ // Èçâåñòèÿ ÐÀÍ. Ñåðèÿ ôèçè÷åñêàÿ. 2012. Ò. 76, 8. Ñ. 10161021.[112] Áåëîâ Ï. À., ßêîâëåâ Ñ. Ë. Àñèìïòîòè÷åñêèé ìåòîä íàõîæäåíèÿ àìïëèòóäû òðåõ÷àñòè÷íîãî ðàçâàëà. nd-ðàññåÿíèå // ßäåðíàÿ ôèçèêà. 2013. Ò. 76, 2. Ñ. 153166.[113] Belov P.
A., Yakovlev S. L. Binary scattering and breakup in the threenucleon system // ßäåðíàÿ ôèçèêà. 2014. Ò. 77, 3. Ñ. 369375.[114] Áåëîâ Ï. À., ßêîâëåâ Ñ. Ë. Àñèìïòîòèêà áèíàðíîé àìïëèòóäû äëÿ ìîäåëüíîãî óðàâíåíèÿ Ôàääååâà // Èçâåñòèÿ ÐÀÍ. Ñåðèÿ ôèçè÷åñêàÿ. 2016. Ò. 80, 3.
Ñ. 266270.127.