Диссертация (1145320), страница 26
Текст из файла (страница 26)
Т. 114. № 4. С. 1709–1721.44. Mataga N. и др. Ultrafast charge transfer and radiationless relaxations from higherexcited state (S2) of directly linked Zn-porphyrin (ZP)-acceptor dyads: investigationsinto fundamental problems of exciplex chemistry // Chem. Phys. 2003. Т. 295. № 3. С.215–228.45. Бахшиев Н.Г. No Title // Оптика и спектроскопия. 1964.
Т. 16. С. 821.46. MATAGA N., CHOSROWJAN H., TANIGUCHI S. Ultrafast charge transfer inexcited electronic states and investigations into fundamental problems of exciplexchemistry: Our early studies and recent developments // J. Photochem. Photobiol. CPhotochem. Rev. 2005. Т.
6. № 1. С. 37–79.47. Ionkin V.N., Ivanov A.I. Numerical Simulations of Ultrafast Charge SeparationDynamics from Second Excited State of Directly Linked Zinc−Porphyrin−Imide Dyadsand Ensuing Hot Charge Recombination into the First Excited State // J. Phys. Chem. A.2009. Т.
113. № 1. С. 103–107.48. Иванов А.И., МихайловаВ.А. Кинетика быстрых фотохимических реакцийразделения и рекомбинации заряда // Успехи химии. 2010. Т. 79. № 12. С. 1139–1163.49. Саркисов О.М., Уманский С.Я. Фемтохимия // Успехи химии. 2001. Т. 70. № 6.С. 515–538.50. Nadtochenko V.A. и др. No Title // Abstracts of 18th Conference of the CondensedMatter Division of the European Physical Society. Motreuaux, Switzerland: , 2000. С.317.51. Guldi D.M. и др. Nanotubes, Multifunctional carbon materials – from fullerenes tocarbon // Chem. Soc.
Rev. 2006. Т. 35. С. 471–487.52. Jiwan J.L.H., Soumillion J.P. Photoinduced charge separation in rigidbichromophoric compounds and charge transfer state electron transfer reactivity // J.Phys. Chem. 1995. Т. 99. С. 14233–14230.53. Martín N. и др. C 60 -Based Electroactive Organofullerenes // Chem.
Rev. 1998. Т.98. № 7. С. 2527–2548.54. Imahori H., Umeyama T., Ito S. Large π-aromatic molecules as potential sensitizers194for highly efficient dye-sensitized solar cell // Acc. Chem. Res. 2009. Т. 42. № 11. С.1809–1818.55. Segura J.L., Martin N., Guldi D.M. Materials for organic solar cells: C60/πconjugated oligomer approach // Chem. Soc. Rev. 2005. Т. 34. С. 31–47.56.
Martin N. и др. Electronic communication in tetrathiafulvalene (TTF)/C60 systems :Toward molecular solar energy conversion materials? // Acc. Chem. Res. 2007. Т. 40.С. 1015–1024.57. Sessler J.L. и др. Synthesis and photophysiscs of a porphyrin-fullerene dyadassembled trough Watson-Crick hydrogen bonding // Chemm. Commun. 2005. Т. 14. С.1892–1894.58. Ito O., D’Souza F. Photoinduced electron transfer in supramolecular systemz offullerenes functionalized with ligands capable of binding to zinc porphyrins and zincphtalocyanines // Coord. Chem.
Rev. 2005. Т. 249. С. 1410–1422.59. Balbinot D. и др. Electrostatic assembles of fullerene-porphyrin hybrids: towardlong-lived charge separation // J. Phys. Chem. B. 2003. Т. 107. С. 13273–13279.60. Guldi D.M. и др. Nanoscale organization of phatalocyanine-fullerene system:Remarkable stabilization of charges in photoactive 1-D nanotubules // J. Am. Chem.Soc. 2005. Т. 127. С. 5811–5813.61. Prato M., Maggini M.
Fulleropyrrolidenes: A family of full-fledged fullerenederivatives // Acc. Chem. Res. 1998. Т. 31. С. 519–526.62. Imahori H. Porphyrin-fullerene linked systems as artificial photosynthetic mimics //Org. Biomol. Chem. 2004. Т. 2. № 10. С. 1425–1433.63. Imahori H. и др. Modulating Charge Separation and Charge RecombinationDynamics in Porphyrin−Fullerene Linked Dyads and Triads: Marcus-Normal versusInverted Region // J.
Am. Chem. Soc. 2001. Т. 123. № 11. С. 2607–2617.64. Huang L. и др. Energy-funneling-based broadband visible-light-absorbing bodipyC60 triads and tetrads as dual functional heavy-atom-free organic tripletphotosensitizers for photocatalytic organic reactions // Chemistry (Easton). 2013. Т. 19.№ 51. С. 17472–17482.65.
Nyman E.S., Hynninen P.H. Research advances in the use of tetrapyrrolic195photosensitizers for photodynamic therapy // J. Photochem. Photobiol. B Biol. 2004. Т.73. № 1–2. С. 1–28.66. Maligaspe E. и др. Photosynthetic antenna-reaction center mimicry: sequentialenergy- and electron transfer in a self-assembled supramolecular triad composed ofboron dipyrrin, zinc porphyrin and fullerene // J.
Phys. Chem. A. 2009. Т. 113. № 30. С.8478–8489.67. Guldi D.M. Fullerene–porphyrin architectures; photosynthetic antenna and reactioncenter models // Chem. Soc. Rev. 2002. Т. 31. № 1. С. 22–36.68. Berera R. и др. A simple artificial lightharvesting dyad as a model for excess energydissipation in oxygenic photosynthesis // Proc. Natl. Acad. Sci. U.
S. A. 2006. Т. 103.№ 14. С. 5343–5348.69. D’Souza F. и др. Energy transfer followed by electron transfer in a supramoleculartriad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for thephotosynthetic antenna-reaction center complex // J.
Am. Chem. Soc. 2004. Т. 126. №25. С. 7898–7907.70. Berera R. и др. Charge separation and energy transfer in a caroteno-C60 dyad:photoinduced electron transfer from the carotenoid excited states // Photochem.Photobiol. Sci. 2006. Т. 5. № 12. С. 1142–1149.71. Garg V. и др. Conformationally constrained macrocyclic diporphyrin-fullereneartificial photosynthetic reaction center // J. Am.
Chem. Soc. 2011. Т. 133. № 9. С.2944–2954.72. Balzani V. и др. Photochemistry and Photophysics of Coordination Compounds:Overview and General Concepts // Photochemistry and Photophysics of CoordinationCompounds I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. С. 1–36.73. Royon A. и др. No Title // Opt. Mater. Express. 2011. Т. 5. С. 866–882.74. Keldysh L.V. Ionization in the field of a strong electromagnetic wave // Sov. Phys.JETP.
1965. Т. 20. С. 1307–1314.75. Gattass R., Cerami L., Mazur E. Micromachining of bulk glass with bursts offemtosecond laser pulses at variable repetition rates // Opt. Express. 2006. Т. 14. С.5279–5284.19676. Eaton S. и др. Heat accumulation effects in femtosecond laser-written waveguideswith variable repetition rate // Opt. Express. 2005. Т. 13. С. 4708–4716.77. Schaffer C.B., García J.F., Mazur E. Bulk heating of transparent materials using ahigh-repetition-rate femtosecond laser // Appl. Phys. A Mater. Sci.
Process. 2003. Т. 76.№ 3. С. 351–354.78. Taylor R., Hnatovsky C.E., Simova E. Applications of femtosecond laser inducedself-organized planar nanocracks inside fused silica glass // Laser Photonics Rev. 2008.Т. 2. № 1–2. С. 26–46.79. Bellec M. и др. Beat the diffraction limit in 3D direct laser writing in photosensitiveglass // Opt. Express. 2009. Т. 17. С. 10304–10318.80.
Ashcom J. и др. Numerical aperture dependence of damage and supercontinuumgeneration from femtosecond laser pulses in bulk fused silica // J. Opt. Soc. Am. B.2006. Т. 23. С. 2317–2322.81. Temnov V. и др. Multiphoton ionization in dielectrics: comparison of circular andlinear polarization // Phys. Rev. Lett.
2006. Т. 97. С. 237403.82. Coffa S. и др. Determination of diffusion mechanisms in amorphous silicon // Phys.Rev. B Condens. Matter. 1992. Т. 45. С. 8355–8358.83. Stookey S.D. Photosensitive glass // Ind. Eng. Chem. 1949. Т. 41. С.
856–861.84. Qiu J. и др. Optical properties of structurally modified glasses doped with gold ions// Opt. Lett. 2004. Т. 29. С. 370–372.85. Díez I., Ras A. Fluorescent silver nanoclusters // Nanoscale. 2011. Т. 3. С. 1963–1970.86. Watanabe Y. и др. Photosensitivity in phosphate glass doped with Ag + uponexposure to near-ultraviolet femtosecond laser pulses // Appl. Phys.
Lett. 2001. Т. 78.С. 2125–2127.87. Canioni L. и др. Cardinal T. Three-dimensional optical data storage using thirdharmonic generation in silver zinc phosphate glass // Opt. Lett. 2008. Т. 33. С. 360–362.88. Dai Y. и др. Fluorescent Ag nanoclusters in glass induced by an infraredfemtosecond laser // Chem.
Phys. Lett. 2007. Т. 439. С. 81–84.89. Qiu J. и др. Manipulation of gold nanoparticles inside transparent materials //197Angew. Chem. Int. Ed. Engl. 2004. Т. 43. С. 2230–2234.90. Dai Y. и др. Effect of cerium oxide on the precipitation of silver nanoparticles infemtosecond laser irradiated silicate glass // Appl. Phys. B. 2006. Т. 84. С. 501–505.91. Hua B. и др. Micro-modification of metal-doped glasses by a femtosecond laser // J.Laser Micro/Nanoengineering. 2007. Т. 2. С. 36–39.92. Teng Y.
и др. Controllable space selective precipitation of copper nanoparticles inborosilicate glasses using ultrafast laser irradiation // J. Non-Cryst. Solids. 2011. Т. 357.С. 2380–2383.93. Almeida J. и др. Metallic nanoparticles grown in the core of femtosecond lasermicromachined waveguides // J. Appl. Phys. 2014. Т. 115.
С. 193507.94.РомановаЕ.А.,КонюховА.И.Локальныйнагревстеклаостосфокуссированными фемтосекундными импульсами // Теоретическая физика.2007. Т. 8. С. 201–206.95. Кононенко В.В. и др. Модификация кварцевого стекла лазерными импульсамифемтосекундной длительности // Компьютерная оптика. 2009. Т. 3. № 33. С. 254–260.96. Glezer E.N.
и др. Three-dimensional optical storage inside transparent materials //Opt. Lett. 1996. Т. 21. № 24. С. 2023.97. Davis K.M. и др. Writing waveguides in glass with a femtosecond laser // Opt. Lett.1996. Т. 21. № 21. С. 1729.98. Primak W., Kampwirth R. The Radiation Compaction of Vitreous Silica // J. Appl.Phys.