Диссертация (1137475), страница 15
Текст из файла (страница 15)
Îñòàëîñü ïðîâåðèòü ïîñëåäíþþòî÷êó ξi = ξj + ε:f (ξj + ε, ξj , u) = 2S 0 (ξj )S 0 (u + ξj )℘1 (ξj + ε − ξj )+000+ S (ξj )S (u+ξj ) −ζ1 (u+ξj +ε)+ζ1 (ξj +ε−ξj )+ζ2 (u+ξj ) −S 0 (ξj )S 0 (u+ξj )℘2 (u+ξj )+000+ S (ξj )S (u + ξj ) −ζ1 (ξj + ε) + ζ1 (ξj + ε − ξj ) + ζ2 (ξj ) − S 0 (ξj )S 0 (u + ξj )℘2 (ξj )++ S 00 (ξj + ε − ξj ) S 0 (ξj + ε)S 0 (u + ξj ) + S 0 (ξj )S 0 (u + ξj + ε) .Çäåñü âêëàä ìîãóò äàòü òîëüêî2S 0 (ξj )S 0 (u + ξj )℘1 (ε) + S 0 (ξj )S 00 (u + ξj )ζ1 (ε) + S 00 (ξj )S 0 (u + ξj )ζ1 (ε)++ S 00 (ε) S 0 (ξj + ε)S 0 (u + ξj ) + S 0 (ξj )S 0 (u + ξj + ε) =111= 2S 0 (ξj )S 0 (u + ξj ) 2 + S 0 (ξj )S 00 (u + ξj ) + S 00 (ξj )S 0 (u + ξj ) −εεεhi1− 2 (S 0 (ξj ) + εS 00 (ξj ))S 0 (u + ξj ) + S 0 (ξj )(S 0 (u + ξj ) + εS 00 (u + ξj )) =ε111= 2S 0 (ξj )S 0 (u + ξj ) 2 + S 0 (ξj )S 00 (u + ξj ) + S 00 (ξj )S 0 (u + ξj ) −εεε1 0111− 2 S (ξj )S 0 (u + ξj ) − 2 εS 00 (ξj )S 0 (u + ξj ) − 2 S 0 (ξj )S 0 (u + ξj ) − 2 εS 0 (ξj )S 00 (u + ξj ) =εεεε111= 2S 0 (ξj )S 0 (u + ξj ) 2 + S 0 (ξj )S 00 (u + ξj ) + S 00 (ξj )S 0 (u + ξj ) −εεε111−2 2 S 0 (ξj )S 0 (u + ξj ) − S 00 (ξj )S 0 (u + ξj ) − S 0 (ξj )S 00 (u + ξj ).εεεÈ òóò îñîáåííîñòè íåò, ñëåäîâàòåëüíî, íè îäèí èç ïîëþñîâ íå ïîäòâåðäèëñÿ, è ôóíêöèÿ ÿâëÿåòñÿ êîíñòàíòîé ïî ξi .
×òîáû íàéòè ýòó êîíñòàíòó, ìû åå îöåíèâàåì â ðåãóëÿðíîé òî÷êå ξi = ξj + 21 . Èìååì:11f (ξj + , ξj , u) = 2S 0 (ξj )S 0 (u + ξj )℘1 ( )+2211000+ S (ξj )S (u+ξj ) −ζ1 (u+ξj + )+ζ1 ( )+ζ2 (u+ξj ) −S 0 (ξj )S 0 (u+ξj )℘2 (u+ξj )+2210411+ S (ξj )S (u + ξj ) −ζ1 (ξj + ) + ζ1 ( ) + ζ2 (ξj ) − S 0 (ξj )S 0 (u + ξj )℘2 (ξj )+221 01 00 1000+ S ( ) S (ξj + )S (u + ξj ) + S (ξj )S (u + ξj + ) =22200000= 2S (ξj )S (u+ξj )℘2 (0)+ S (ξj )S (u+ξj ) −ζ2 (u+ξj )+ζ2 (0)+ζ2 (u+ξj ) −00000−S (ξj )S (u + ξj )℘2 (u + ξj ) + S (ξj )S (u + ξj ) −ζ2 (ξj ) + ζ2 (0) + ζ2 (ξj ) −1 01 0000 1000−S (ξj )S (u+ξj )℘2 (ξj )+ S ( ) S (ξj + )S (u+ξj )+S (ξj )S (u+ξj + ) .222000Ïîëó÷èëè, ÷òîf (ξj + 21 , ξj , u) = 2S 0 (ξj )S 0 (u + ξj )℘2 (0)−−S 0 (ξj )S 0 (u + ξj )℘2 (u + ξj ) − S 0 (ξj )S 0 (u + ξj )℘2 (ξj )++S 00 ( 21 )0S (ξj +102 )S (u00+ ξj ) + S (ξj )S (u + ξj +12)== S 0 (ξj )S 0 (u + ξj ) 2℘2 (0) − ℘2 (u + ξj ) − ℘2 (ξj ) + 011 0S(ξ+)S(u+ξ+1jj22)+ S 00 ( ).+2S 0 (ξj )S 0 (u + ξj )Èñïîëüçóÿ (AI.23), (AI.14) è (AI.15) (èç êîòîðîãî ìû íàõîäèìS 00 ( 12 ) = −π 2 θ32 (0, τ2 )θ42 (0, τ2 )), ìîæíî âèäåòü, ÷òî âûðàæåíèå â êâàäðàòíûõ ñêîáêàõ ðàâíî íóëþ:1 S 0 (ξj + 21 ) S 0 (u + ξj + 21 )℘2 (0)−℘2 (u+ξj )+℘2 (0)−℘2 (ξj )+ S ( )+=2S 0 (ξj )S 0 (u + ξj )00= π 2 θ22 (0)θ32 (0)θ42 (0)−π 2 θ32 (0)θ42 (0)θ1 (−ξj )θ1 (ξj )θ1 (−u − ξj )θ1 (u + ξj ) 2 2+π θ2 (0)θ32 (0)θ42 (0) 2−22θ2 (0)θ2 (u + ξj )θ2 (0)θ22 (ξj )θ1 (ξj )θ1 (u + ξj ) θ1 (u + ξj )1θ1 (ξj )−πθ3 (0)θ4 (0)−=θ2 (ξj ) πθ3 (0)θ4 (0) θ2 (ξj )θ2 (u + ξj ) θ2 (u + ξj )= π 2 θ32 (0)θ42 (0)θ1 (−ξj )θ1 (ξj )θ1 (−u − ξj )θ1 (u + ξj )2 22+πθ(0)θ(0)+34θ22 (u + ξj )θ22 (ξj )+π 2 θ32 (0)θ42 (0)θ12 (ξj )θ12 (u + ξj )2 22+πθ(0)θ(0)=34θ22 (ξj )θ22 (u + ξj )105= −π 2 θ32 (0)θ42 (0)+π 2 θ32 (0)θ42 (0)θ12 (ξj )θ12 (u + ξj )2 22−πθ(0)θ(0)+34θ22 (u + ξj )θ22 (ξj )θ12 (ξj )θ12 (u + ξj )2 22+πθ(0)θ(0)= 0.34θ22 (ξj )θ22 (u + ξj )Ò.å.
ïîëó÷èëè f = 0.106Ñïèñîê ëèòåðàòóðû[1] L. Duren, Univalent Functions, Springer, 1983[2] K. Lowner, Untersuchungen uber schlichte konforme Abbildungen desEinheitskreises. I, Math. Ann. 89, 1923, 103-121.[3] J. Gibbons, S. Tsarev, Reductions of the Benney equations, Phys. Lett.A211, 1996, 19-24.[4] J. Gibbons, S. Tsarev, Conformal maps and reductions of the Benneyequations, Phys.
Lett. A258, 1999, 263-271.[5] M. Jimbo, T. Miwa, Soliton equations and innite dimensional Liealgebras, Publ. RIMS, Kyoto University 19, 1983, 943-1001.[6] R. Hirota, Y. Ohta, Hierarchies of coupled soliton equations I, J. Phys.Soc. Japan 60, 1991, 798-809.[7] M. Adler, E. Horozov, P. van Moerbeke, The Pfa lattice and skeworthogonal polynomials, Int. Math.
Res. Notices 1999, 1999, no 11,569-588.[8] M. Adler, T. Shiota, P. van Moerbeke, Pfa τ -functions, Math. Ann.322, 2002, 423-476.[9] S. Kakei, Orthogonal and symplectic matrix integrals and coupled KPhierarchy, J. Phys. Soc. Japan 99, 1999, 2875-2877.[10] S. Isojima, R. Willox, J. Satsuma, On various solutions of the coupledKP equation, J. Phys. A: Math. Gen.
35, 2002, 6893-6909.[11] R. Willox, On a generalized Tzitzeica equation, Glasgow Math. J. 47A,2005, 221-231.[12] Y. Kodama, K.-I. Maruno, N -soliton solutions to the DKP hierarchyand the Weyl group actions, J. Phys. A: Math. Gen. 39, 2006, 40634086.[13] Y. Kodama, V. Pierce, Combinatorics of dispersionless integrablesystems and universality in random matrix theory, Commun. Math.Phys. 292, 2009, 529-568.107[14] M. Adler, V. Kuznetsov, P. van Moerbeke, Rational solutions to thePfa lattice and Jack polynomials, Ergodic Theory Dynam. Systems22, 2002, 1365-1405.[15] J. van de Leur, Matrix integrals and the geometry of spinors, J.Nonlinear Math.
Phys. 8, 2001, 288-310.[16] A. Orlov, Deformed Ginibre ensembles and integrable systems, Phys.Lett. A 378, 2014 319-328.[17] K. Takasaki, Auxiliary linear problem, dierence Fay identities anddispersionless limit of Pfa-Toda hierarchy, SIGMA 5, 2009, 109.[18] K. Takasaki, Dierential Fay identities and auxiliary linear problem ofintegrable hiearchies, Advanced Studies in Pure Mathematics 61, 2011,387-441.[19] K. Takasaki, T.
Takebe, Integrable hierarchies and dispersionless limit,Rev. Math. Phys. 7, 1995, 743-808.[20] T. Takebe, Lectures on Dispersionless Integrable Hierarchies, RikkyoCenter of Mathematical Physics Lecture Note 2 , 2014[21] V. Akhmedova, A. Zabrodin, Dispersionless DKP hierarchy and ellipticLowner equation, J. Phys. A: Math. Theor. 47, 2014, 392001.[22] V. Akhmedova, A. Zabrodin, Elliptic parametrization of Pfa integrablehierarchies in the zero dispersion limit, Theor. Math. Phys.
185, 2015,410-422.[23] V. Akhmedova and A. Zabrodin, Dispersionless Pfa-Toda hierarchyand elliptic Lowner equation, J. of Math. Phys. 57-10, 2016.[24] V. Akhmedova, T. Takebe, A. Zabrodin, Multi-variable reductions ofthe dispersionless DKP hierarchy, J. Phys. A: Math. Theor. 50, 2017.[25] I. Krichever, The method of averaging for two dimensional integrableequations, Funct. Anal. Appl. 22, 1989, 200-213.[26] I. Krichever, A. Marshakov, A. Zabrodin, Integrable Structure ofthe Dirichlet Boundary Problem in Multiply-Connected Domains,Commun.
Math. Phys. 259, 2005, 1-44.[27] C. Pommerenke, Univalent functions, Gottingen, 1975.108[28] Ã. Ì. Ãîëóçèí, Î ïàðàìåòðè÷åñêîì ïðåäñòàâëåíèè ôóíêöèé, îäíîëèñòíûõ â êîëüöå Ìàòåì. ñá., 1951, 29(71):2, 469-476.[29] Y. Komatu, Untersuchungen uber konforme Abbildung vonzweifach zusammenhangenden Gebieten, Proc. of the PhysicoMathematical Society of Japan 25, 1943) 1-42 (Avaliable via J-Stage:https://www.jstage.jst.go.jp).[30] Àëåêñàíäðîâ È.À., Ïàðàìåòðè÷åñêèå ïðîäîëæåíèÿ â òåîðèè îäíîëèñòíûõ ôóíêöèé, Ì. Íàóêà. 1976ã. 344 ñ.[31] M. D. Contreras, S. Diaz-Madrigal, P.
Gumenyuk, Loewner Theory inannulus I: evolution families and dierential equations, Trans. Amer.Math. Soc. 365, 2013, 2505-2543.[32] M. D. Contreras, S. Diaz-Madrigal, P. Gumenyuk, Loewner Theory inannulus II: Loewner chains, Anal. Math. Phys. 1, 2011, 351-385.[33] F. Bracci, M. D. Contreras, S. Diaz-Madrigal, A. Vasil'ev, Classical andstochastic Lowner-Kufarev equations, Harmonic and Complex Analysisand Applications, Birkhauser-Verlag, 2013, pp. 39-134.[34] R. Bauer, R. Friedrich, Stochastic Loewner evolution in multiplyconnected domains, C. R.
Math. Acad. Sci. Paris 339, 2004, 579-584.[35] D. Zhan, Stochastic Loewner evolution in doubly connected domains,Probability Theory and Related Fields 129, 2004, 340-380.[36] M. Manas, L. Martinez-Alonso, E. Medina, Reductions and hodographsolutions of the dispersionless KP hierarchy , J. Phys. A: Math. Gen.35, 2002, 401-417.[37] M. Manas, S -functions, reductions and hodograph solutions of the rthdispersionless modied KP and Dym hierarchies, J.
Phys. A: Math.Gen. 37, 2004, 11191-11221.[38] K. Takasaki, T. Takebe, Radial Lowner equation and dispersionlesscmKP hierarchy.[39] T. Takebe, L.-P. Teo, A. Zabrodin, Lowner equation and dispersionlesshierarchies, J. Phys. A: Math. Gen. 39,2006, 11479-11501.[40] T. Takebe, Dispersionless BKP hierarchy and quadrant Lownerequation, SIGMA 10,2014, 023 (13 pp.).109[41] Ñ. Ï.
Öàðåâ, Ãåîìåòðèÿ ãàìèëüòîíîâûõ ñèñòåì ãèäðîäèíàìè÷åñêîãî òèïà. Îáîáùåííûé ìåòîä ãîäîãðàôà Èçâ. ÀÍ ÑÑÑÐ. Ñåð.ìàòåì., 1990, 54:5, 1048-1068[42] B.A. Dubrovin, S.P. Novikov, Hydrodynamics of weakly deformedsoliton lattices. Dierential geometry and Hamiltonian theory, RussianMath. Surveys 44, no. 6, 1989, 35-124.[43] M.