Диссертация (1137475), страница 16
Текст из файла (страница 16)
Pavlov, Algebro-geometric approach in the theory of integrablehydrodynamic-type systems, Comm. Math. Phys. 272, 2007, 469-505.[44] E. Ferapontov, K. Khusnutdinova, On integrability of (2+1)dimensional quasilinear systems, Comm. Math. Phys. 248, 2004, 187206.[45] L. de Branges,A proof of the Bieberbach conjecture , Acta Math. 154,1985, 137-152.[46] C. H. Fitzgerald, Ch. Pommerenke,The de Branges theorem onunivalent functions, Trans. Amer. Math. Soc. 290, 1985, 683-690[47] G. F. Lawler, O. Schramm, W.
Werner, Values of Brownian intersectionexponents. I. Half-plane exponents, Acta Math. 187, 2001, 237-273.[48] G. F. Lawler, O. Schramm, W. Werner, Values of Brownian intersectionexponents. II. Plane exponents, Acta Math. 187 , 2001, 275-308[49] J. R. Lind,A sharp condition for the Loewner equation to generate slits,Ann. Acad. Sci. Fenn. Math. 30,2005) 143-158.[50] J. R. Lind, D. E.
Marshall, S. Rohde, Collisions and spirals of LoewnerTraces, to appear in Duke Math. J.[51] D. E. Marshall, S. Rohde, The Loewner dierential equation and slitmappings, J. Amer. Math. Soc. 18,2005, 763-778.[52] D. Prokhorov, A. Vasil'ev, Singular and tangent slit solutions to theLowner equation, in Analysis and Mathematical Physics, Trends inMathematics, Birkhauser Verlag, 2009, 455-463.[53] Êóôàðåâ Ï.Ï. Îá èíòåãðàëàõ ïðîñòåéøåãî äèôôåðåíöèàëüíîãîóðàâíåíèÿ ñ ïîäâèæíîé ïîëÿðíîé îñîáåííîñòüþ ïðàâîé ÷àñòè Ó÷åíûå çàïèñêè Òîìñêîãî óí-òà.
1946.- ò. 1.- ñ. 35-48.110[54] Êóôàðåâ Ï.Ï., Ñîáîëåâ Â.Â., Ñïîðûøåâà Ë.Â. Îá îäíîì ìåòîäå èññëåäîâàíèÿ ýêñòðåìàëüíûõ çàäà÷ äëÿ ôóíêöèé, îäíîëèñòíûõ â ïîëóïëîñêîñòè, Âîïðîñû ãåîìåòðè÷åñê. òåîðèè ôóíêöèé: Òðóäû Òîìñêîãî óíòà. 1968. - ò. 200, âûï. 5. - ñ. 142-164.[55] Êóâàåâ Ì.Ð., Êóôàðåâ Ï.Ï. Îá óðàâíåíèè òèïà Ëåâíåðà äëÿ ìíîãîñâÿçíûõ îáëàñòåé, Ó÷åíûå çàïèñêè Òîìñêîãî óí-òà. 1955. - ò.
25.- ñ. 19-34.[56] Ï. Ï. Êóôàðåâ, Îá îäíîïàðàìåòðè÷åñêèõ ñåìåéñòâàõ àíàëèòè÷åñêèõ ôóíêöèé, Ìàòåì. ñá., 1943, 13(55):1, 87-118[57] S. T. Aleksandrov, V. V. Sobolev,Extremal problems in some classes offunctions, univalent in the half plane, having a nite angular residue atinnity, Siberian Math. J. 27, 1986, 145-154. Translation from Sibirsk.Mat. Zh. 27, 1986, 3-13.[58] Â. Â.
Ãîðÿéíîâ, Ïîëóãðóïïû êîíôîðìíûõ îòîáðàæåíèé Ìàòåì. ñá.,1986, 129(171):4, 451-472[59] V. V. Goryainov, I. Ba,Semigroups of conformal mappings of theupper half-plane into itself with hydrodynamic normalization at innity,Ukrainian Math. J. 44, 1992, 1209-1217.[60] È. À. Àëåêñàíäðîâ, Â. Â. ×åðíèêîâ, Ïàâåë Ïàðôåíüåâè÷ Êóôàðåâ(íåêðîëîã) ÓÌÍ, 1969, 24:4(148), 181-184[61] Yu. Manin, Sixth Painleve equation, universal elliptic curve, and mirrorof P2 , Am. Math.
Soc. Transl. 186 (2), 1998, 131-151.[62] A. Odesskii, V. Sokolov, Systems of Gibbons-Tsarev type and integrable3-dimensional models.[63] À. Â. Îäåññêèé, Â. Â. Ñîêîëîâ, Èíòåãðèðóåìûå (2+1)-ìåðíûå ñèñòåìû ãèäðîäèíàìè÷åñêîãî òèïà ÒÌÔ, 2010, 163:2, 179-221[64] À. Â. Îäåññêèé, Â. Â. Ñîêîëîâ, Èíòåãðèðóåìûå ýëëèïòè÷åñêèåïñåâäîïîòåíöèàëû ÒÌÔ, 2009, 161:1, 21-36[65] V. Shramchenko, Integrable systems related to elliptic branchedcoverings, J. Physics A: Math.
and Gen.,36 (42), 2003, 1058510605,[66] M. Sato, Y. Sato, Soliton equations as dynamical systems on innitedimensional Grassmann manifold, Lecture Notes in Num. Appl. Anal.5, 1982, 259-271.111[67] T. Takebe, Toda lattice hierarchy and conservation laws, Commun.Math. Phys. 129, 1990) 281-318.[68] K. Takasaki, Painleve-Calogero correspondence revisited, J.
Math. Phys.42, 2001, 1443-1473.[69] A. Zabrodin, A. Zotov, Quantum Painleve-Calogero correspondence forPainleve VI, J. Math. Phys. 53,2012, 073508.[70] S. Kharchev, A. Zabrodin, Theta vocabulary I, Journal of Geometry andPhysics, 94, 2015, 19-31.[71] D. Mumford, Tata Lectures on Theta I, Birkhauser , 1982.[72] Ch. Pommerenke, Uber die Subordination analytischer Funktionen, J.Reine Angew. Math. 218, 1965, 159-173.[73] O. Schramm, Scaling limits of loop-erased random walks and uniformspanning trees, Israel J.
Math. 118, 2000, 221-288.[74] À. Â. Çàáðîäèí, Ðàçíîñòíûå óðàâíåíèÿ Õèðîòû, ÒÌÔ, 1997, 113:2,179-230112.