Диссертация (1137439), страница 18
Текст из файла (страница 18)
Naito, D. Sagaki, A. Schilling, and M. Shimozono, A uniform modelfor KirillovReshetikhin crystals II: Alcove model, path model, and P = X, preprint2014, arXiv:1402.2203.[LNSSS3] C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono, QuantumLakshmibai-Seshadri paths and root operators, preprint 2013, arXiv:1308.3529. [LP1]C. Lenart and A. Postnikov, Affine Weyl groups in K-theory and representation theory,Int. Math. Res. Not.
2007 (2007), 165.[LNSSS4] C.Lenart, S.Naito, D.Sagaki, A.Schilling, M.Shimozono, A uniform model forKirillov-Reshetikhin crystals III: Nonsymmetric Macdonald polynomials at t = 0 andDemazure characters, arXiv:1511.00465[M1] I.G.Macdonald, Symmetric functions and Hall polynomials, second ed., OxfordUniversity Press, 1995.[M2] I.G.Macdonald, Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki,Vol. 1994/95. Astérisque No. 237 (1996), Exp. No.
797, 4, 189–207.[Mor] Morita K (1958). Duality of modules and its applications to the theory of ringswith minimal condition. Science reports of the Tokyo Kyoiku Diagaku. Section A6(150):83-142.[Mus1] I.M.Musson, Lie superalgebras and enveloping algebras, vol. 131, Graduate Studiesin Mathematics. American Mathematical Society, Providence, RI, 2012.105[Mus2] I.M.Musson, The enveloping algebra of the Lie superalgebra osp(1, 2), Represent.Theory 1 (1997), 405–423.[N] K.Naoi, Weyl modules, Demazure modules and finite crystals for non-simply lacedtype, Adv.
Math. 229 (2012), no. 2, 875–934.[Naz] Назарова Л. А. Представления колчанов бесконечного типа. Известия академиинаук СССР. 37 (1973), 752-791.[O] E.Opdam Harmonic analysis for certain representations of graded Hecke algebras, ActaMath. 175 (1995), no. 1, 75–121.[OS] D.Orr, M.Shimozono, Specializations of nonsymmetric Macdonald-Koornwinderpolynomials, arXiv:1310.0279.[P] G.Pinczon, The enveloping algebra of the Lie superalgebra osp(1, 2), J. Algebra 132(1990), no. 1, 219–242.[RY] A.Ram, M.Yip, A combinatorial formula for Macdonald polynomials, Adv. Math. 226(2011), no.
1, 309–331.[S]Y. Sanderson, On the Connection Between Macdonald Polynomials and DemazureCharacters, J. of Algebraic Combinatorics, 11 (2000), 269–275.[Sage] SageMath,NonsymmetricMacdonaldpolynomialspackagebyA.SchillingandN.M.Thiery(2013),http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/rootsystem/non symmetric macdonald polynomials[Sam] Самойленко Ю. С., Островский В. Л.
О паре операторов, связанных квадратичным соотношением. Функц. Анализ и его приложения.[SVV] P. Shan, M. Varagnolo, E. Vasserot, On the center of quiver-Hecke algebras,arXiv:1411.4392.[Zus] Zusmanovich P. A converce to the second Whitehead Lemma. J. Lie Theory, 2008, vol.18, pp. 295-299.106.