Диссертация (1137339), страница 12
Текст из файла (страница 12)
Preprint arXiv:9705004 [math.AG].[V4] Verbitsky M., Deformations of trianalytic subvarieties of hyperk?hler manifolds, SelectaMath. (N.S.), 4, no. 3, pp. 447-490, 1998. Preprint arXiv:9610010 [math.AG].[V5] Verbitsky M., Hypercomplex Varieties, Comm. Anal. Geom., 7, no. 2, pp. 355-396,1999. Preprint arXiv:9703016 [math.AG].[V6] Verbitsky M., Coherent Sheaves on General K3 Surfaces and Tori, Pure and AppliedMathematics Quarterly Volume 4, Number 3 (Special Issue: In honor of FedorBogomolov, Part 2 of 2), pp. 651-714, 2008.[V7] Verbitsky M., A global Torelli theorem for hyperkahler manifolds, Duke Math.
J.,162,15, pp. 2929-2986, 2013.[V8] Verbitsky M., Cohomology of compact hyperkähler manifolds, GAFA, 6, 4, pp 601–611,1996. alg-geom electronic preprint 9501001, 89 pages, LaTeX.[V9] M. Verbitsky, Action of the Lie algebra SO (5) on the cohomology of a hyperkählermanifold, Functional Analysis and Its Applications, 24:3 (1990), pp. 229–23077[Var] Varouchas J., Kahler Spaces and a Proper Open Morphisms, Math. Ann., 283, pp.13-52, 1989.[W] Wakakuwa H., On Riemannian manifolds with homogeneous holonomy group Sp(),Tohoku Math. J., 1958, 10(2), pp.
274-303.[Y] Yau S.T., On the Ricci curvature of a compact Kähler manifold a and the complexMonge-Ampere equation I., Comm. on Pure and Appl. Math., 31, pp. 339-411, 1978.[Yo] Yoshioka K., Moduli spaces of a stable sheaves on abelian surfaces, Math. Ann., 321,pp. 817-884, 2001.78.