А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102), страница 23
Текст из файла (страница 23)
Тогда n=φ(19)=18. Поскольку решение будем производить вручную, то не будем пользоваться методом Флойда.
Разбиение G на подмножества произведем следующим образом: если x mod 3=1, то x S1, если x mod 3=2, то x
S2, если x mod 3=0, то x
S3.
Вычисления будут производиться по формулам:
i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
xi | 1 | 8 | 7 | 18 | 17 | 4 | 13 | 9 | 18 |
ui | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 2 | 3 |
vi | 0 | 1 | 2 | 3 | 3 | 6 | 7 | 8 | 8 |
S | S1 | S2 | S1 | S3 | S2 | S1 | S1 | S3 | S3 |
x3=x8. Логарифм найдем из сравнения (v3—v8)log28≡(u8—u3) (mod 18)
-5 log28≡3(mod 18)
13 log28≡3(mod 18)
log28≡3·7(mod 18)
log28≡3(mod 18).
Действительно, 23≡8 (mod 19).
Ответ: log28≡3(mod 18).
3.4. Алгоритм Полига-Хеллмана.
Этот алгоритм использует следующий подход: пусть G – группа порядка n, и n= - каноническое разложение на простые сомножители. Если x=logga mod n, то, вычислив xi=logga mod
, для 1 ≤ i ≤ k, можно восстановить x, используя китайскую теорему об остатках.
Для того чтобы вычислить xi, вычисляют коэффициенты l0, l1,…, в pi-чном представлении числа xi: xi=l0+l1pi+…+
, где 0 ≤ lj ≤ pi—1.
Представим метол Полига-Хеллмана следующим алгоритмом:
Алгоритм Полига-Хеллмана:
Вход: g – порождающий элемент циклической группы порядка n, a G.
Ш.1. Найти каноническое разложение n= .
Ш.2. Для i от 1 до k выполнить следующие действия:
1. Задать q=pi, α=αi.
2. Задать γ=1, l-1=0.
4. Для j от 1 до α—1 выполнить:
4.2. Вычислить li= . (например, используя алгоритм «шаг младенца - шаг великана» или прямой поиск).
5. Вычислить xi=l0+l1q+…+lα—1qα—1.
Ш.3. Используя Китайскую теорему об остатках, решить систему сравнений x≡xi(mod ) .
Выход. x=logga mod n.
Замечание. Все вычисления производятся в группе G кроме случаев, когда оговорено иное.
Замечание. Поскольку порядок элемента (в чем нетрудно убедиться, подставив вместо
его выражение из 4.2 и учитывая, что порядок
есть q), то li=
.
Заметим, что вычисление логарифма прямым поиском на этапе 4.2. происходит сравнительно быстро, так как приходится перебирать не более q значений.
Данный метод эффективен в случаях, когда n является большим числом, а все его простые сомножители – малыми числами.
Сложность данного алгоритма составляет O( ) умножений в группе при условии, что разложение n известно.
Пример.
Пусть G=Z*p, p=61, g=2, a=7.
Ш.1. n=φ(p)=p—1=60=22·3·5.
Ш.2.
1. q=2, α=2.
2. γ=1, l-1=0.
4. j=0 γ=1,
=730 mod 61 = 60
l0=log6060 mod 61=1.
j=1 γ=2,
=(7·2-1)30mod 61=(7·31)30mod 61=1
l0=log601 mod 61=0.
5. x1=1+0·2=1.
1. q=3, α=1.
2. γ=1, l-1=0.
4. j=0 γ=1,
=720 mod 61 = 47
l0=log4747 mod 61=1.
5. x2=1.
1. q=5, α=1.
2. γ=1, l-1=0.
4. j=0 γ=1,
=712 mod 61 = 34
l0=log934 mod 61=4 (этот логарифм нашли прямым перебором).
5. x3=4.
Ш.3. Составим и решим систему . Решением этой системы будет x≡48 (mod 60).
Проверка: 248mod 61=7.
Ответ: log27 mod 60 = 48.
3.5. Алгоритм исчисления порядка (index-calculus algorithm).
Основные идеи алгоритма исчисления порядка были известны с 20-х годов XX века, но лишь в 1979 году Адлерман указал на этот алгоритм как на средство вычисления дискретного логарифма и исследовал его трудоемкость. В настоящее время алгоритм исчисления порядка и его улучшенные варианты дают наиболее быстрый способ вычисления дискретных логарифмов в некоторых конечных группах, в частности, в группе Zp*.
Этот алгоритм в отличие от алгоритмов прямого поиска и ро-метода подходит не для всех циклических групп.
Алгоритм состоит в следующем:
Алгоритм исчисления порядка
Вход: g – порождающий элемент циклической группы порядка n, a G, с≈10 – параметр надежности.
Ш.1. Выбирается факторная база S={p1, p2,…,pt}. (Если G=Zp*, то S состоит из t первых простых чисел.)
Ш.2. Выбрать случайное k: 0≤k<n и вычислить gk.
Ш.3. Попытаться разложить gk по факторной базе:
Если это не удалось, вернуться на Шаг 2.
Ш.4. Логарифмируя обе части получившегося выражения, получаем
В этом выражении неизвестными являются логарифмы.
Это сравнение с t неизвестными следует запомнить.
Ш.5. Если сравнений вида (*), полученных на Шаге 4, меньше, чем t+c, то вернуться на Шаг 2.
Ш.6. Решить систему t+c сравнений с t неизвестными вида (*), составленную на Шагах 2-5.
Ш.7. Выбрать случайное k: 0≤k<n и вычислить agk.
Ш.8. Попытаться разложить agk по факторной базе:
Если это не удалось, вернуться на Шаг 7.
Ш.9. Логарифмируя обе части последнего равенства, получаем
где loggpi (1≤i≤t) вычислены на Шаге 6 как решение системы сравнений.
Выход. x = logga mod n.
В том случае, когда G=Zp*, в качестве факторной базы S берут t первых простых чисел. Такой выбор оправдан следующим наблюдением. Число, наугад выбранное из множества целых чисел, с вероятностью 1/2 делится на 2, с вероятностью 1/3 – на 3, с вероятностью 1/5 – на 5 и т.д. Поэтому можно ожидать, что в промежутке от 1 до p—1 найдется достаточно много чисел, в разложении которых участвуют только маленькие простые делители из множества S. Именно такие числа отыскиваются на шагах 2 и 7.
Параметр c вводится для того, чтобы система сравнений, решаемая на Шаге 6, имела единственное решение. Дело в том, что полученная система может содержать линейно зависимые сравнения. Считается, что при значении с порядка 10 и большом p система сравнений имеет единственное решение с высокой вероятностью.
Пример.
G=Z*71, g=7, a=17, n=φ(71)=70.
S={2, 3, 5, 7} (Шаг 1). (Можем сразу указать log77 mod 70=1).
Теперь будем перебирать k для составления системы сравнений вида * (Шаги 2—5).
k=2, 72 mod 71=49=7·7. (поскольку log77 уже вычислен, это сравнение нам не пригодится).
k=3, 73 mod 71=59.
k=4, 74 mod 71=58=2·29.
k=5, 75 mod 71=51=3·17.
k=6, 76 mod 71=2 6≡log72(mod 70)
k=7, 77 mod 71=14=2·7 7≡log72+log77(mod 70)
k=8, 78 mod 71=27=33 8≡3log73(mod 70)
k=9, 79 mod 71=47.
k=10, 710 mod 71=45=32·5 10≡2log73+log75(mod 70)
Теперь имеем достаточно сравнений для того, чтобы определить логарифмы от элементов факторной базы. Вот эти сравнения:
6≡log72(mod 70)
7≡log72+log77(mod 70)
8≡3log73(mod 70)
10≡2log73+log75(mod 70)
Решая полученную систему, получаем (Шаг 6):
log72≡6(mod 70), log73≡26(mod 70),
log75≡28(mod 70), log77≡1(mod 70).
Перейдем к Шагам 7—9:
k=1, 26·7 mod 71=40=23·5 log726≡3log72+log75—1(mod 70)
log726≡3·6+28—1(mod 70)
log726≡45(mod 70)
Проверка: 745 mod 71 = 26. Верно.
Ответ: log726≡45(mod 70).
Замечание: Для случая G=Zp и для случая G=F2m составляет Lq[1/2,c], где q есть мощность G, с > 0 – константа. Алгоритм, имеющий наилучшую оценку сложности (по времени) для дискретного логарифмирования в Zp есть вариант алгоритма исчисления индексов под названием «метод решета числового поля» (number field sieve), для дискретного логарифмирования в F2m - вариант данного алгоритма под названием «алгоритм Копперсмита» (Coppersmith’s algorithm). Эти алгоритмы слишком сложны, чтобы приводить их здесь.
Задачи и упражнения.
Упражнения к Главе 1.
-
Вычислить НОД(a,b) при помощи алгоритма Евклида с делением с остатком и бинарного алгоритма Евклида. Сравнить количество итераций.
a) a = 715, b = 195; d) a = 1818, b = 726; g) a = 2448, b = 1632;