Главная » Просмотр файлов » А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии

А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102), страница 18

Файл №1127102 А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии) 18 страницаА.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102) страница 182019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 18)

Пусть a и b – корни нашего многочлена. Нужно проверить, что тогда a+b, ab, -a, a-1, а также 0 и 1, тоже являются корнями многочлена. Для 0 и 1 это очевидно. Далее, по предположению имеем поэтому, не забывая, что характеристика равна p, получаем

Вычисления, выполненные нами при нахождении обратного элемента по умножению, оказались довольно громоздкими. Конечно, на компьютере они будут выполнены мгновенно. Однако, если степень многочлена будет в несколько сотен единиц, и решать придется много уравнений, компьютеру тоже мало не покажется. Кроме того, в машинном виде идеально любые объекты представлять в виде чисел и все сводить к операциям над числами. Но чтобы связать числа с элементами конечного поля нам нужно ввести одно важное понятие.

Определение. Порождающий элемент мультипликативной группы поля, если он существует, называется примитивным элементом.

Теорема (О примитивном элементе).

Любое конечное поле имеет примитивный элемент.

Доказательство.

Мы изложим только идею доказательства. Примитивный элемент, если он существует, должен иметь порядок k=pn1. т.к. именно столько ненулевых элементов в поле GF(pn). Если же примитивного элемента нет, то все ненулевые элементы поля имеют порядки меньшие числа k. Точнее, их порядки должны делить это число, по теореме Лагранжа. И если S=НОК(порядков ненулевых элементов поля) и S<k, то получится, что многочлен xS1 имеет k корней, что невозможно. Если же S=k=pn1, то можно сконструировать требуемый примитивный элемент.

Идея конструкции такова. Пусть p1, p2,…, pt - все различные простые делители числа k. По предположению, для каждого многочлена должен найтись элемент поля, который не является его корнем. Пусть это будет элемент ai.

Число k, по основной теореме арифметики, имеет некоторое разложение

. Введем в игру элементы . Произведением этих элементов и является наш примитивный элемент.

При выполнении вычислений в конечных полях часто оказывается полезен так называемый логарифм Якоби. Если рассмотреть все ненулевые элементы конечного поля, содержащего q элементов, как степени примитивного элемента b, то операция умножения у нас становится простым сложением по модулю q-1, поскольку .

При использовании примитивных элементов в операциях сложения возникает проблема, как вычислить степень примитивного элемента, равную сумме 1+bi. Это важно, так как

Определение. Отображение называется логарифмом Якоби. То есть, .

Кроме того, для bi =q-1 логарифм Якоби неопределен, т.к. в этом случае bi+1=0.

Пример 2. Вычислим логарифм Якоби в расширении поля GF(3) степени 2. Пусть x2+1 будет тем многочленом, чье поле разложения мы ищем. Данное поле имеет обозначение GF(9), т.е. содержит 9 элементов.

Самое сложное - найти примитивный элемент. Из теории, которая будет изложена позже, в поле GF(9) их ровно , т.е. половина. Напомним, что φ(n) – функция Эйлера, равная количеству натуральных чисел, меньших n и взаимно-простых с n. Для малых конечных полей вполне может подойти либо остаток x, либо x+1. Претендента на примитивный элемент нужно будет возвести в 4-ю степень. Если она окажется неединичной, то это он – примитивный элемент.

Так как x2 + 1 = 0, то x2 = 2, поэтому последовательно получаем

x, x2 = 2, x4 = 22 = 1;

x+1, (x+1)2 =x2+2x+1=2+2x+1=2x, (x+1)4=(2x)2=x2=2.

Таким образом, b=x+1 - примитивный элемент. Составляем таблицу из степеней элемента b, из нее таблица логарифма Якоби получается мгновенно

Таблица степеней примитивного элемента

Степень элемента b

b1

b2

b3

b4

b5

b6

b7

b8

Элемент поля GF(9)

x+1

2x

1+2x

2

2x+2

x

x+2

1

Теперь рассматриваем суммы 1+bi и находим по таблице, каким степеням aj они равны. Например, 1+b=x+2=b7, т.е. L(1) = 7.

Таблица логарифма Якоби

i

1

2

3

4

5

6

7

8

L(i)

7

3

5

8

2

1

6

4

Аналогично простым числам огромную роль в криптографии играют неприводимые многочлены – простые элементы кольца многочленов. С неприводимыми многочленами ситуация несколько проще, чем с простым числами, по крайней мере можно построить неприводимый многочлен любой степени. В то время как самое большое простое число, известное на 12.09.07 равно 232582657-1 – это 44-е простое число Мерсенна.

Заинтересовавшиеся вопросом или желающие принять участие в распределенных вычислениях по получению нового рекордного числа, могут обратиться на сайт http://primes.utm.edu, посвященный этому вопросу.

Теорема (Критерий Эйзенштейна).

Пусть K – кольцо с однозначным разложением на простые множители, например, кольцо целых чисел, f(x)=xn+an-1xn-1+ … +a1x+a0 - многочлен над этим кольцом.

Если найдется простой элемент p кольца K, т.е. простое число в случае кольца целых чисел, который делит все коэффициенты a0, a1, …, an-1, но при этом p2 не делит свободный член a0, то многочлен f(x) неприводим.

Эйзенштейн Фединант Готхольд Макс (1823-1852) ученик К.Ф.Гаусса предложил этот критерий более 150 лет назад. Удивительно, но никаких более сильных критериев неприводимости до сих пор не найдено.

Доказательство.

Рассмотрим кольцо вычетов по модулю p, тому самому, который делит все коэффициенты. Так как p – простой элемент, то кольцо вычетов на самом деле будет полем, обозначим его P. Многочлен f(x) над полем P примет вид xn.

Пусть многочлен f(x) приводим, и f(x)=g(x)h(x) - его разложение,

g(x)=xm+bm-1xm-1 + … + b1x+b0, h(x)=xk+cn-1xk-1+ … + c1x+c0, m+k=n.

Пусть над полем P многочлены g(x) и h(x) имеют вид G(x), H(x). Тогда в кольце многочленов P[x] мы получим два разложения xn=G(x)H(x). В силу факториальности кольца P[x] получаем, что G(x)=xm, F(x)=xk. Следовательно, у многочленов g(x) и h(x) над исходным кольцом K свободные члены b0 и c0 делятся на простой элемент p. А значит, a0=b0c0 делится на p2. Противоречие с условием критерия.

§3. Кольца многочленов.

3.1. Кольца многочленов.

В предыдущей главе мы подробно рассмотрели кольца Zm и поля Z*p , элементами которых являлись целые числа. Выяснили, что Zp* является циклической группой относительно умножения, а также заметили, что любое конечное поле размерности p изоморфно Z*p для подходящего p.

Рассмотрим произвольный многочлен степени k с коэффициентами из Zm:

f(x) = akxk + … + a1x + a0.

Степень многочлена будем обозначать как deg f(x).

В силу того, что Zmкоммутативное кольцо, множество всех многочленов с коэффициентами из Zm также образуют коммутативное кольцо Zm[x] вместе с операциями сложения и умножения многочленов. Операция сложения многочленов f(x) = akxk + … + a1x + a0 и g(x)=bkxk + … + b1x+b0 задается как

f(x)+g(x) = (ak+bk mod m) xk + … + (a1+b1 mod m) x + (a0+b0 mod m),

умножение как

f(x)g(x) = (akbk mod m) x2k +(ak-1bk+akbk-1 mod m)x2k-1 … + (a1b0+a0b1 mod m) x + +(a0b0 mod m),

то есть как обычное сложение и умножение многочленов, но операции сложения и умножения коэффициентов производятся по модулю m.

Пример 1.

Рассмотрим Z2[x]. Это множество состоит из всех многочленов с коэффициентами из {0,1}. Возьмем два многочлена из Z2[x]:

f(x) = x4+x2+1,

g(x) = x4+x3+x+1.

Вычислим сумму и произведение этих многочленов.

f(x)+g(x) = (1+1 mod 2)x4 + (1+0 mod 2)x3 + (0+1 mod 2)x2 + (1+0mod 2)x + + (1+1 mod 2) = x3+x2+x.

f(x)g(x) = (x4+x2+1)(x4+x3+x+1) = x8 + x7 + (2 mod 2)x5 + (2 mod 2) x4 + x6 + (2 mod 2) x3 + x2 + x + 1 = x8 + x7 + x6 + x2 + x + 1.

Многочлен из Zm[x] называется неприводимым над Zm, если его нельзя представить в виде произведения каких-либо двух многочленов из Zm[x]. Понятие неприводимого многочлена в кольце многочленов эквивалентно понятию простого числа в кольце целых чисел.

Так же как и для кольца целых чисел, для колец полиномов справедлива

Теорема (о делении с остатком)

единственная пара многочленов

0 ≤ deg r(x) < deg g(x): f(x)=g(x)q(x)+r(x).

Характеристики

Тип файла
Документ
Размер
2,98 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее