Главная » Просмотр файлов » А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии

А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102), страница 22

Файл №1127102 А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии) 22 страницаА.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102) страница 222019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 22)

Общий подход к поиску чисел x, y таков: выбирается факторная база S={p1, p2, … , pt}. Как правило, это t первых простых чисел.

Случайно выбирается несколько чисел ai, вычисляются числа bi=ai2 mod n и разлагается по факторной базе bi= . Те числа bi, которые разложить по базе S не удалось, из дальнейшего рассмотрения исключаются. Всего требуется t+1 пара (ai, bi).

Затем из чисел bi составляется такое произведение B= , ci {0,1}, что B оказывается полным квадратом (то есть mod 2=0 для всех j). Вектор c находится путем решения соответствующей системы сравнений. Тогда

x= , y= .

Очевидно, данная пара удовлетворяет сравнению x2y2(mod n). Если она удовлетворяет еще и условию x ±y(mod n), то НОД(xy,n) есть нетривиальный делитель n. Иначе следует повторить данный метод, выбрав другие пары (ai, bi).

§3. Алгоритмы дискретного логарифмирования.

Проблема дискретного логарифмирования в группе Zp* состоит в следующем: пусть p – простое число, g – порождающий элемент группы Zp* (или, иначе, примитивный корень по модулю p), a=gx (mod p). Пусть известны g, p, a, но неизвестно x. Требуется найти x, или, иначе, logga mod (p—1), то есть вычислить дискретный логарифм.

В отличие от логарифма непрерывного, дискретный логарифм не является дифференцируемой монотонной функцией, его нельзя найти приближенно, разложив в ряд Тейлора, и вообще никакого приближенного значения здесь не может быть, ведь x – целое число.

Дискретное логарифмирование считается сложной проблемой. С этой проблемой связаны и другие теоретико-числовые проблемы, такие как проблема Диффи-Хеллмана, логарифмирование в Zn. Если удастся решить проблему дискретного логарифма, то приведенные задачи решаются за полиномиальное время.

3.1. Метод прямого поиска.

Этот наивный метод является самым трудоемким, он требует O(n) умножений, то есть обладает экспоненциальной сложностью. Состоит он в следующем: вычисляются g0, g1, g2,…, gp—1 пока не попадется gia(mod p). Полученное i будет искомым дискретным логарифмом i=logga (mod p—1).

Пример

p=23, g=5, a=19.

i

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

gi mod p

1

5

2

10

4

20

8

17

16

11

9

22

18

21

13

19

Ответ: log519 mod 22 = 15.

3.2. Шаг младенца – шаг великана.

В открытой литературе этот метод впервые был описан Шенксом (Daniel Shanks), ссылки на него известны с 1973 года. Это был один из первых методов, более быстрый чем метод прямого перебора.

Общая схема алгоритма такова:

Берем два целых числа m и k, таких что mk>p (как правило, m=k= ). Затем вычисляются два ряда чисел:

a, ga, g2a, … , gm1a (mod p)

gm, g2m, g3m, … , gkm (mod p)

(все вычисления произведены по модулю p).

Найдем такие i и j, для которых gia=gjm. Тогда x=jmi.

Справедливость последнего равенства подтверждается следующей цепочкой, все вычисления в которой произведены по модулю p:

gx=gjm-i=gjm(gi)-1=gjma(gia)-1=gjma(gjm)-1=a.

Заметим, что числа i и j непременно будут найдены, поскольку при i= , j= выполняется jmi= , причем km>p. То есть среди всех чисел вида jmi обязательно содержится 0 < xp.

Замечание: Указанный метод можно применять для разыскания дискретных логарифмов в любой циклической группе порядка n.

Приведем этот метод в форме алгоритма.

Алгоритм «Шаг младенца-шаг великана»:

Вход: g - порождающий элемент конечной группы G порядка n; a G.

Ш.1. Вычислить m= .

Ш.2. Вычислить b=gm.

Ш.3. Вычислить последовательности ui=bi, vj=agj Для i,j= .

Ш.4. Найти i, j такие что ui=vj. x=mij mod n. Идти на Выход.

Выход: logga=x.

Одна из трудоемких частей этого алгоритма – это поиск на Шаге 4. Он может быть осуществлен несколькими способами:

  1. Сначала построить таблицу (i, ui), отсортировать ее по второй компоненте а затем произволить сравнения по мере нахождения компонент vj.

  2. Построить две таблицы (i, ui) и (j, vj), отсортировать каждую из них, а затем произвести поиск совпадений.

  3. Объединить u, v в одну таблицу, снабдив их номером в соответствующей последовательности и битом принадлежности к одной из двух последовательностей, а затем применить совместную сортировку. И т. п.

Сложность данного алгоритма составляет O( ) умножений по модулю и O( log n) операций сравнения.

Пример.

Пусть n=229 (простое число), g=6, a=12.

Ш.1. m=16.

Ш.2. b=ga mod n =612 mod 229 = 183.

Ш.3. В этом примере вычислим сначала ряд ui, а затем будем вычислять компоненты vj до тех пор, пока не найдется совпадение.

i, j

1

2

3

4

5

6

7

8

9

10

ui

183

55

218

48

82

121

159

14

43

83

vj

72

203

73

209

109

196

11

12

13

14

15

16

75

214

3

91

165

196

i=16, j=6. x=mi—j mod n = 250 mod 228 = 22.

Проверка: 622 mod 229= 12.

Ответ: log612 mod 228 = 22.

3.3. Ро-метод Полларда для дискретного логарифмирования.

Этот алгоритм осуществляет случайный поиск дискретных логарифмов, как и метод «шаг ребенка – шаг великана», но он требует меньшего объема памяти для хранения данных, поэтому предпочтительней для практических целей. В основе данного метода лежит та же идея, что и в основе ро-метода для факторизации – строится псевдослучайная последовательность, в которой находятся совпадающие элементы при помощи метода Флойда, а затем на основании полученной величины вычисляется искомый дискретный логарифм.

Пусть требуется вычислить logga в конечной группе G порядка n.

Группа G разбивается на три непересекающихся подмножества примерно равной мощности: G=S1US2US3, так чтобы 1 S2. Причем разбиение должно быть построено таким образом, чтобы проверка, к какому подмножеству принадлежит данный элемент x, была простой.

Например, если G=Zp, где p – простое число, то можно задать разбиение S1={1,…, }, S2={ ,…, }, S3={ , … , p—1}, или разбиение может быть таким: если x mod 3=1, то x S1, если x mod 3=2, то x S2, если x mod 3=0, то x S3.

Далее на G задается последовательность x0, x1, x2, … , где x0=1, xi+1 вычисляется по xi посредством функции f для i≥0:

xi+1=f(xi)=

Вычисления проводятся в группе G, то есть если G=Zm, то вычисления следует производить по модулю m.

Такая последовательность групповых элементов может быть представлена двумя последовательностями u0, u1, u2,… и v0, v1, v2,… такими, что xi= , u0=v0=0,

ui+1= , vi+1=

Вычисления в последовательностях u и v производятся по модулю n.

В силу того, что группа G – конечная, при помощи метода Флойда можно найти такие xi и x2i, что xi = x2i. Тогда = . Логарифмируя по основанию g обе части данного уравнения, получим

(viv2i)logga≡(u2iui) (mod n)

Решая это сравнение, получим искомый логарифм. (Заметим, что если G=Z*m, то n=φ(m)).

Сложность данного метода составляет O( ) , где n – порядок группы G.

Замечание. Метод может дать отказ в том случае, когда vi =v2i. Тогда следует назначить случайные значения от 0 до n—1 переменным u0, v0 , вычислить x0= и повторить все шаги алгоритма.

Замечание. В том случае, когда имеется достаточно места для хранения данных в процессе вычислений (например, когда G невелико или вычисления производятся вручную), можно обойтись без метода Флойда. Тогда следует хранить все члены последовательностей x, u и v до того, как xi = xj и дискретный логарифм находится из сравнения (vivj)logga≡(ujui) (mod n).

Пример.

G=Z*19, a=8, g=2.

Характеристики

Тип файла
Документ
Размер
2,98 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6430
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее