Главная » Просмотр файлов » Слёзкин Н.А. Динамика вязкой несжимаемой жидкости

Слёзкин Н.А. Динамика вязкой несжимаемой жидкости (1123892), страница 54

Файл №1123892 Слёзкин Н.А. Динамика вязкой несжимаемой жидкости (Слёзкин Н.А. Динамика вязкой несжимаемой жидкости) 54 страницаСлёзкин Н.А. Динамика вязкой несжимаемой жидкости (1123892) страница 542019-05-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 54)

е. с,= 1!а —, рра(р) (4.8) ю — а Р(и) Таким образом, для коэффициента сь получим: Р ) Р, (рь) (4.9) В рассматриваемом нами случае (4.5) будем иметь: ан у т „/Р Ра(Р) / р Р' / р = — 1пп у р-аю р юну 1/ ею= Ию ея' Р-аа, / р (4.10) ь;. — дву 2е " ! а!и — '. л с„ р,сил ~у Грь л 2У ра !аз юоаля М =-- ( — 1)ее "' з!п — 'У. (4.11) л Суммируя вычеты (4.10) и (4.11) и подставляя в (4.й), получим следуююцее выражение для скорости частиц жидкости: ь-. ь. а1п— Лчу и(у, т) = (7 — + — ~~~~~( — 1)" е Выражение (4.12) указывает на то, что при стремлении т к беско- для определения же вычета сь надо умножить (4.7) на разность Р— Р„и УстРемить Р к значению Рл, УчитываЯ, что 1!ю — з — = 11гп " а «)=Р.(Р) „ьр — рь ' „р — рл нечности распределение скорости становится линейным, т.

е. !>щ (у, 1)гя(7 У вЂ”. (4. 13) с.+„' = -й Таким образом, решение задачи об установившемся движении жидкости между параллельными стенками получается из решения задачи о неустановившемся движении при обращении 1 в бесконечность. Для силы вязкости ка движущейся стенке получим из (4.12): — ь* ° ч = — г( — ) = — „Г'-ьгл'* ч ~ ячь> а=> Для начального момента 1 = 0 сумма ряда (4.14) обращается в бесконечность. Следовательно, сила вязкости на движущейся стенке в момент начала внезапного перемещения ев с конечной скоростью будет обращаться в бесконечность. Если стенка будет перемещаться с переменной скоростью (7 = (7(г), то решение задачи по формуле (1.12) будет представляться в виде и(у, Г) = (7(О) и (у, Г)+ ~ (7'(т) и (у, à — т)ггт, (4дб) я я =гя Ь.;, я>п — „- 1>яя пг(у Г)=в+ — „Х( — 1)ьа ь' а . (418) где ф 5. Задача Громеки о движении жидкости в цилиндрической трубе Рассмотрим неустановившееся дни>кение вязкой несжимаемой жидкости в круглой цилиндрической трубе в предположении, что по двум еб сечениям, находящнися иа расстоянии 1, Р, Р, распределены давления Рг н Ря (рис.

85), Регнение втой задачи при переменных давлениях Р, и р> и Р . 85. нс. при произвольном начальном распределении скоростей было дано еще в 1882 г. в работе И. С. Громеки '). Мы будем г) Гро меха И. С., К теории движения жидкости в узких цилиндрических трубках, Казань, издание Уняверс. типографии, 1882. В книге Дюрэнда адэродянамнкаэ, т. П1, 1989, сгр. 77, в статье Л. Прандтля неправильно ярн.

писывается первое решение рассматриваемой задачи П. Шиманскому; зто решение было дано Громеков на 50 лег раньше, а при простейшем начальном условии с учеточ действия силы тяжести решение бмло дано еща Наяье (см. введение). 322 нвтстлновившакся двнжаиив вязкой жидкости (гл. >х $5) злдлчл гтомвки о движвиии жидкости в цилиидгичвской тгтзв 323 рассматривать тот случай, когда давлеиия р, и рз во времени не меняются, а в начальный момент с=О жидкость иаходится в покое. В силу зтих предположений движение вязкой жилкости будет осесимметричным, т. е. — — О, ди дз (5.1) где б — полярный угол, проведенный в плоскости уОг, перпендикулярной к оси трубы.

В полярных координатах дифференциальное уравнение(1.4) прямолинейного движения вязкой жидкости при использовании (5.1) представится в виде ди /дзи ! ди1 1 др — =»( — + —— де = (дгз г дг) р дл' (5.2) В рассматриваемом нами случае последнее слагаемое, представляю- щее собой перепад давления, отиесенпый к плотиости, будет постоян- ным, т. е.

1 д — — — = Р = совз1, (5.3) Начальиое условие и условие прилипаиия будут иметь вид: при 1=0 и=О, при г=а и=О. ~ (5 4) Проводя преобрааовапие Лапласа, т. е. переходя от оригииала к изо- бражению в уравнении (5.2) и граничном условии (5.4), получим; изи» 1 дй р „. Рг — + — — — — ив= — — ' ига г де при г=а и'=О. (5.5) Независимыми решениями уравнения (5»5) без правой части будут функции Бесселя от мнимого аргумента и'(г, р) = А!е(г ~/ — )+ВКе~ г~/ Р )+ — — '. Так как функция Кз обращается в бесконечность при г = О, то необходимо постоянную В положить равной нулю.

Для определеиия а частиым решением уравнения (3.5) с правой частью будет постоянная Р, л Таким образом, общее решение уравнения (5.5) будет иметь вид 324 нвтстьновившввся движения вязкой жидкости (гл. ок постоянной А используем граничное условие (5.5). В результате всего этого для иэображения скорости будем иметь: уо(г1/ Р) — Го(а $/ Р) и" (г, р) — — — ' (5.6) а для оригинала "( ~~'-)- ( к'-р), и(г, Г)= — — г ело го(а)/' ) ' — - ° (5. 7) Используя разложение (4.7) и равенства (4.8), получим: '( ~ —;)-"( 1~-',) р1о(а р — ) (5,8) "'~" — ")-"( ~у — ') Рьуо (иэоУ )и (5.9) (-)' (~-)' Подставляя этот ряд в (5.8), получим: с = — (гз — аз).

1 о — 4„ (5.10) Между функциями Бесселя от мнимого аргумента и от действитель- ного имеет место следующее соотношение: (5.1 1) уо(х) = Г-"./о(Хх). На основании этого соотношения корни уравнения l (ау Р)=0 будут представляться в виде /рл (5. 12) функция Бесселя от мнимого аргумента представляется следующим рядом: 5 51 задача ггомеки о движении жидкости в цнлиндгической тетив 325 где йа — корни функции Бесселя нулевого порядка /0()а) = О. (5.13) Подставляя значения корней (5.12) в правую часть (5.9), получим: ф, аз! ' ч 0( йл) На основании одного нз рекуррептных соотношений для функций Бесселя имеем: ! )о ( — !йь) = — !д (!Аа) = — — у ( — лв) = — (3 (Ал).

(5. 14) Суммируя (5.10) и (5.14) и подставляя в (5.7), получим решение рассматриваемой задачи в виде следующего ряда; н(г, Г)=Р ~ 1 — — -- — 3 д е ю — ~ ° (5.15) хр~ аз ' эх 7 (1 со аг в Чтобы получить формулу для расхода, умножим обе части (5.15) на 2ягг(г, проинтегрируем от 0 до а и воспользуемся рекуррептной формулой Я / .ге(х) хйх =. а.гг(а). о В результате получим ч= [! — 32 (5,16) Формула Пуазейля (5.9) главы 1'гг получится из (5.16) при предельном переходе времени г к бесконечности. Для силы вязкости на стенке цилиндрической трубы будем иметь: , 'а а= — —,с ~! ,г'ледовательно, коэффициент сл будет окончательно представляться в виде 2,."( —.) -.—:.

гь = — нз — — — е lг (ль) нвястлновившвеся движение вязкой жидкости [гл. !х Для корней функции Бесселя и-го порядка имеют место следующие равенства '); Х вЂ” = "1 1 1,з г (л+Н ь=! а (5.18) 1 1 ЬИ Л$ 2! 1)'( +2 ' (5.19) С возрастанием времени расход (5.16) и сила вязкости (5.17) на стенке будут возрастать и приближаться к своим предельным значениям, имеющим место при установившемся движении вязкой жидкости в круглой цилиндрической трубе. й 6.

Неустановившееся круговое движение вязкой жидкости Если предполагать жидкость несжимаемой, пренебрегать действием массовых сил и считать движение жидкости плоско-параллельным, то дифференциальные уравнения (6.6) и (6.7) главы Н в полярных координатах г и ф будут представляться в виде дсг дп, п дог оз 1 дл г е„2 два! дс "дг г дт г я дг [, " гз гз дт)' дпт дпт пт дп,г огпт ! др сч 2 дог ь (6.!) Для кругового движения частиц вязкой жидкости радиальную компоненту скорости о, необходимо положить равной нулю: о„= О. Тогда из уравнения несжимаемости (6.1) получим: до, — = О. дт (6.2) ') Ку з ь и ни Р. О., Бесселевы функции, ОНТИ, !935, стр.

112. В нашем случае п=О. Полагая в (5.16) и (5.17) !=О и используя (5.16), получим, что для начального момента расход и сила вязкости на стенке обращаются в нули: й 6) ншстлновившввся кгтговов движение вязкой жидкости 327 Считая давление р не зависящим от полярного двух уравнений (6.1) будем иметь: пз 1 дд г Г дг' дтп угла ф, из первых (6.3) Первое уравнение (6.3) может быть использовано для определения давления, после того как ив второго уравнения будет определена скорость о частиц жидкости. Скорость деформации сдвига в полярных координатах согласно (8.9) главы 1 представляется в виде ! дог дп и 2а„= — — + г дт + дг Следовательно, сила вязкости для кругового движения частиц жидкости будет определяться равенством удпт птт т=2ре =р( — — — ).

1, дг (6.4) при следующих граничном и начальном условиях: при г==а от=ма, ~ при 1=0 от=О. (6.6) Выполняя преобразование Лапласа над уравнением (6.5) и граничным условием (6.6) и учитывая при этом начальное условие, можно Лифференциальное уравнение (6.3) для определения скорости принадлежит также к параболическому типу, Решение этого уравнения может быть проведено аналогично тому, как это было сделано выше по отношению к дифференциальному уравнению (5.2) длн неустановившегося прямолинейного движения вязкой жидкости в цилиндрической трубе.

га В качестве простейшего примера кругового движения частиц вязкой жидкости рассмотрим задачу о вращении вокруг своей оси бесконечного круглого цилиндра, заволнепного вязкой жидкостью. Пусть цилиндр радиуса а (рис. 86) с мо- Рнс. 36. мента г = О начал вращаться с постоянной угловой скоростью еь Вели учесть условие прилипаннч частиц жидкости к стенкам, то рассматриваемая задача будет сводиться к регпепню дифференциального уравнения (6.5) 328 нззстановившвеся движение вязкой жидкости [гл.

~х (6.7) Б(г 1/ — ) уг (а 1/г — ) (6. 8) Решение же задачи для оригинала будет тогда представляться в виде интеграла (6.9) Особенности подннтегрального выражения (6.9) будут совпадать с корнями функции Бесселя от мнимого аргумента ! (а1/ ~)=0. (6.10) Корни уравнения (6.10) будут чисто мнимыми и будут связаны с действительными корнями функции Бесселя первого порядка /„(йь) = 0 (6.1 1) соотношением а з/ — = гйь.

— / Рь (6.12) Используя разложение мероморфной функции на простые дроби, будем иметь: (6. 13) привести рассматриваемую задачу определения скорости оч к задаче определения изображения втой скорости при г=а о'=ма Общее решение дифференцнааьного уравнения (6.7) будет представляться через функцию Бесселя первого порядка от мнимого аргумента в виде не = А/т(г1/ -)+ВК,(г 1/ — '). Учитывая, что функции Кт обращается в бесконечность при г = О, т. е.

Характеристики

Тип файла
DJVU-файл
Размер
4,74 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее