2009 Bromm et al., The formation of the first stars and galaxies (1119309), страница 4
Текст из файла (страница 4)
Rev. Astron. Astrophys. 42, 79–118(2004).Ciardi, B. & Ferrara, A. The first cosmic structures and their effects. Space Sci. Rev.116, 625–705 (2005).Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxiesand large-scale structure with cold dark matter. Nature 311, 517–525 (1984).Couchman, H. M. P. & Rees, M. J. Pregalactic evolution in cosmologies with colddark matter.
Mon. Not. R. Astron. Soc. 221, 53–62 (1986).Firmly established the time and location for first star formation within the newlyintroduced CDM model.Glover, S. The formation of the first stars in the Universe. Space Sci. Rev. 117,445–508 (2005).Dekel, A. et al. Cold streams in early massive hot haloes as the main mode ofgalaxy formation. Nature 457, 451–454 (2009).Galli, D. & Palla, F. The chemistry of the early Universe. Astron. Astrophys. 335,403–420 (1998).Assembled modern versions of the relevant molecular cooling rates in primordial gas.Abel, T., Bryan, G.
L. & Norman, M. L. The formation of the first star in theUniverse. Science 295, 93–98 (2002).The first simulation to connect cosmological initial conditions with the formationof a single population III star within a minihalo.Bromm, V., Coppi, P. S.
& Larson, R. B. The formation of the first stars. I. Theprimordial star-forming cloud. Astrophys. J. 564, 23–51 (2002).Made the case that the first stars were very massive, based on the Jeans massevaluated at the characteristic temperature and density.Yoshida, N., Omukai, K., Hernquist, L. & Abel, T. Formation of primordial stars in aLCDM Universe. Astrophys. J.
652, 6–25 (2006).Tegmark, M. et al. How small were the first cosmological objects? Astrophys. J.474, 1–12 (1997).Established the role of molecular hydrogen cooling in setting the mass of darkmatter haloes where population III stars can form.Gao, L. et al. The first generation of stars in the L cold dark matter cosmology.Mon. Not.
R. Astron. Soc. 378, 449–468 (2007).Omukai, K. & Nishi, R. Photodissociative regulation of star formation in metal-freepregalactic clouds. Astrophys. J. 518, 64–68 (1999).Kitayama, T., Yoshida, N., Susa, H. & Umemura, M. The structure and evolution ofearly cosmological H II regions. Astrophys. J. 613, 631–645 (2004).Machida, M. N., Omukai, K., Matsumoto, T. & Inutsuka, S.
Conditions for theformation of first-stars binaries. Astrophys. J. 677, 813–827 (2008).Clark, P. C., Glover, S. C. O. & Klessen, R. S. The first stellar cluster. Astrophys. J.672, 757–764 (2008).Yoshida, N., Omukai, K. & Hernquist, L. Protostar formation in the early Universe.Science 321, 669–671 (2008).The first fully self-consistent simulation of primordial protostar formation,reaching the largest dynamic range achieved so far.Silk, J. The first stars.
Mon. Not. R. Astron. Soc. 205, 705–718 (1983).Bromm, V. & Loeb, A. Accretion onto a primordial protostar. N. Astron. 9,353–364 (2004).Bromm, V., Coppi, P. S. & Larson, R. B. Forming the first stars in the Universe: Thefragmentation of primordial gas. Astrophys. J. 527, L5–L9 (1999).McKee, C. F. & Ostriker, E.
C. Theory of star formation. Annu. Rev. Astron.Astrophys. 45, 565–687 (2007).McKee,C.F. &Tan, J. C.The formationofthefirst starsII.Radiative feedback processesand implications for the initial mass function. Astrophys. J. 681, 771–797 (2008).Suggested a plausible physical mechanism determining where protostellaraccretion shuts off, thus setting the final mass of a population III star.Ryu, D., Kang, H., Cho, J. & Das, S.
Turbulence and magnetic fields in the largescale structure of the Universe. Science 320, 909–912 (2008).Schaerer, D. On the properties of massive population III stars and metal-freestellar populations. Astron. Astrophys. 382, 28–42 (2002).McKee, C. F. & Tan, J. C. Massive star formation in 100,000 years from turbulentand pressurised molecular clouds. Nature 416, 59–61 (2002).Tan, J. C. & McKee, C. F. The formation of the first stars. I.
Mass infall rates, accretiondisk structure, and protostellar evolution. Astrophys. J. 603, 383–400 (2004).Hollenbach, D. J., Johnstone, D., Lizano, S. & Shu, F. Photoevaporation of disksaround massive stars and application to ultracompact H II regions. Astrophys. J.428, 654–669 (1994).Tan, J. C. & Blackman, E.
G. Protostellar disk dynamos and hydromagneticoutflows in primordial star formation. Astrophys. J. 603, 401–413 (2003).Stacy, A. & Bromm, V. Impact of cosmic rays on Population III star formation.Mon. Not. R. Astron. Soc. 382, 229–238 (2007).53©2009 Macmillan Publishers Limited. All rights reservedREVIEWSNATUREjVol 459j7 May 200933. Yoshida, N., Omukai, K.
& Hernquist, L. Formation of massive primordial stars in areionized gas. Astrophys. J. 667, L117–L120 (2007).34. Nakamura, F. & Umemura, M. The stellar initial mass function in primordialgalaxies. Astrophys. J. 569, 549–557 (2002).35. Johnson, J. L. & Bromm, V. The cooling of shock-compressed primordial gas. Mon.Not. R.
Astron. Soc. 366, 247–256 (2006).36. McGreer, I. D. & Bryan, G. L. The impact of HD cooling on the formation of the firststars. Astrophys. J. 685, 8–20 (2008).37. Spolyar, D., Freese, K. & Gondolo, P. Dark matter and the first stars: A new phaseof stellar evolution.
Phys. Rev. Lett. 100, 051101 (2008).38. Freese, K., Bodenheimer, P., Spolyar, D. & Gondolo, P. Stellar structure of darkstars: A first phase of stellar evolution resulting from dark matter annihilation.Astrophys. J. 685, L101–L104 (2008).39. Iocco, F. et al. Dark matter annihilation effects on the first stars. Mon. Not.
R.Astron. Soc. 390, 1655–1669 (2008).40. Griest, K. & Kamionkowski, M. Supersymmetric dark matter. Phys. Rep. 333,167–182 (2000).41. Bromm, V., Kudritzki, R. P. & Loeb, A. Generic spectrum and ionization efficiency ofa heavy initial mass function for the first stars. Astrophys. J. 552, 464–472 (2001).42. Whalen, D., Abel, T. & Norman, M. L. Radiation hydrodynamic evolution ofprimordial H II regions. Astrophys. J. 610, 14–22 (2004).43. Alvarez, M. A., Bromm, V.
& Shapiro, P. R. The H II region of the first star.Astrophys. J. 639, 621–632 (2006).44. Abel, T., Wise, J. H. & Bryan, G. L. The H II region of a primordial star. Astrophys. J.659, L87–L90 (2007).45. Ciardi, B., Ferrara, A. & Abel, T. Intergalactic H2 photodissociation and the softultraviolet background produced by population III objects. Astrophys. J.
533,594–600 (2000).46. Haiman, Z., Abel, T. & Rees, M. J. The radiative feedback of the first cosmologicalobjects. Astrophys. J. 534, 11–24 (2000).47. Johnson, J. L., Greif, T. H. & Bromm, V. Radiative feedback in the formation of thefirst protogalaxies. Astrophys. J. 665, 85–95 (2007).48. Susa, H. & Umemura, M. Secondary star formation in a population III object.Astrophys. J. 645, L93–L96 (2006).49. Ahn, K. & Shapiro, P. R. Does radiative feedback by the first stars promote or preventsecond generation star formation? Mon. Not. R. Astron.
Soc. 375, 881–908 (2007).50. Whalen, D., O’Shea, B. W., Smidt, J. & Norman, M. L. How the first stars regulatedlocal star formation. I. Radiative feedback. Astrophys. J. 679, 925–941 (2008).51. Machacek, M. E., Bryan, G. L. & Abel, T. Simulations of pregalactic structureformation with radiative feedback. Astrophys. J. 548, 509–521 (2001).52. Ricotti, M., Gnedin, N. Y. & Shull, J. M.
Feedback from galaxy formation: Productionand photodissociation of primordial H2. Astrophys. J. 560, 580–591 (2001).53. Oh, S. P. & Haiman, Z. Second-generation objects in the Universe: Radiativecooling and collapse of halos with virial temperatures above 104 K. Astrophys. J.569, 558–572 (2002).54. Ferrara, A. The positive feedback of population III objects on galaxy formation.Astrophys. J. 499, L17–L20 (1998).55. Haiman, Z., Rees, M. J. & Loeb, A.
Destruction of molecular hydrogen duringcosmological reionization. Astrophys. J. 476, 458–463 (1997).Introduced the concept of negative radiative feedback that might act to self-limitpopulation III star formation.56. Heger, A. & Woosley, S. E. The nucleosynthetic signature of population III.Astrophys. J.
567, 532–543 (2002).The first definitive calculation of the nucleosynthetic pattern of very massivepopulation III stars that die as pair-instability supernovae.57. Tumlinson, J. Chemical evolution in hierarchical models of cosmic structure. I.Constraints on the early stellar initial mass function. Astrophys. J.
641, 1–20 (2006).58. Karlsson, T., Johnson, J. L. & Bromm, V. Uncovering the signature of the first starsin the Universe. Astrophys. J. 679, 6–16 (2008).59. Maeder, A., Meynet, G. & Ekström, S. in From Stars to Galaxies: Building the Pieces toBuild Up the Universe (eds Vallenari, A., Tantalo, R., Portinari, L. & Moretti, A.)13–20 (ASP Conf.