2006 Wood et al., Accretion of the Earth and segregation of its core (1119308), страница 7
Текст из файла (страница 7)
Geochim. Cosmochim. Acta 67,2077–-2091 (2003).52. Chabot, N. L., Draper, D. S. & Agee, C. B. Conditions of core formation in theEarth: Constraints from nickel and cobalt partitioning. Geochim. Cosmochim.Acta 69, 2141–-2151 (2005).53. Cottrell, E. & Walker, D. Constraints on core formation from Pt partitioning inmafic silicate liquids at high temperatures. Geochim. Cosmochim. Acta (in thepress).54. Wood, B. J., Bryndzia, L.
T. & Johnson, K. E. Mantle oxidation state and itsrelationship to tectonic environment and fluid speciation. Science 248,337–-345 (1990).55. Hunten, D. M. Atmospheric evolution of the terrestrial planets. Science 259,915–-920 (1993).56. Herd, C. D. K., Borg, L. E., Jones, J. H. & Papike, J.
J. Oxygen fugacity andgeochemical variations in the martian basalts: Implications for martian basaltpetrogenesis and the oxidation state of the upper mantle of Mars. Geochim.Cosmochim. Acta 66, 2025–-2036 (2002).57. Wood, B. J. Phase transformations and partitioning relations in peridotite underlower mantle conditions. Earth Planet. Sci. Lett. 174, 341–-354 (2000).58. McCammon, C. Perovskite as a possible sink for ferric iron in the lower mantle.Nature 387, 694–-696 (1997).59.
Wood, B. J. & Rubie, D. C. The effect of alumina on phase transformations atthe 660-kilometer discontinuity from Fe-Mg partitioning experiments. Science273, 1522–-1524 (1996).60. Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–-456(2004).61. Kleine, T., Palme, H., Mezger, K. & Halliday, A. N. Hf-W chronometry of lunarmetals and the age and early differentiation of the Moon. Science 310,1671–-1674 (2005).62. Ohtani, E., Yurimoto, H. & Seto, S. Element partitioning between metallic liquid,silicate liquid, and lower-mantle minerals: implications for core formation ofthe Earth. Phys. Earth Planet. Inter. 100, 97–-114 (1997).63. Francis, R.
D. Sulfide globules in mid-ocean ridge basalts (MORB), and theeffect of oxygen abundance in Fe-S-O liquids on the ability of those liquids topartition metals from MORB and komatiite magmas. Chem. Geol. 85, 199–-213(1990).64. Jones, J. H., Hart, S. R. & Benjamin, T. M. Experimental partitioning near theFe-FeS eutectic, with an emphasis on elements important to iron meteoritechronologies (Pb, Ag, Pd, and Tl). Geochim. Cosmochim.
Acta 57, 453–-460(1993).65. Birch, F. Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 57,227–-286 (1952).66. Newsom, H. E. in Global Earth Physics: a Handbook of Physical Constants(ed. Ahrens, T. J.) 159–-189 (American Geophysical Union, Washingon DC,1995).67. Anderson, O.
L. & Isaak, D. G. Another look at the core density deficit ofEarth’s outer core. Phys. Earth Planet. Inter. 131, 19–-27 (2002).68. Poirier, J. P. Light elements in the Earth’s outer core—a critical-review. Phys.Earth Planet. Inter. 85, 319–-337 (1994).69. Dreibus, G. & Palme, H. Cosmochemical constraints on the sulfur content inthe Earth’s core.
Geochim. Cosmochim. Acta 60, 1125–-1130 (1996).70. Kilburn, M. R. & Wood, B. J. Metal-silicate partitioning and the incompatibilityof S and Si during core formation. Earth Planet. Sci. Lett. 152, 139–-148 (1997).© 2006 Nature Publishing GroupREVIEWSNATURE|Vol 441|15 June 200671. Gessmann, C.
K., Wood, B. J., Rubie, D. C. & Kilburn, M. R. Solubility of siliconin liquid metal at high pressure: implications for the composition of the Earth’score. Earth Planet. Sci. Lett. 184, 367–-376 (2001).72. Ohtani, E. & Ringwood, A. E. Composition of the core. I. Solubility of oxygen inmolten iron at high temperatures. Earth Planet. Sci.
Lett. 71, 85–-93 (1984).73. Rubie, D. C., Gessmann, C. K. & Frost, D. J. Partitioning of oxygen during coreformation on the Earth and Mars. Nature 429, 58–-61 (2004).74. Ohtani, E., Ringwood, A. E. & Hibberson, W. Composition of the core. II. Effectof high pressure on solubility of FeO in molten iron. Earth Planet. Sci. Lett. 71,94–-103 (1984).75. O’Neill, H.
S., Canil, D. & Rubie, D. C. Oxide-metal equilibria to 2500 degrees Cand 25 GPa: Implications for core formation and the light component in theEarth’s core. J. Geophys. Res. 103, 12239–-12260 (1998).76. Takafuji, N., Hirose, K., Mitome, N. & Bando, Y. Solubilities of O and Si in liquidiron in equilibrium with (Mg,Fe)SiO3 perovskite and the light elements in thecore. Geophys. Res.
Lett. 32, L06313 (2005).77. Tronnes, R. G. & Frost, D. J. Peridotite melting and mineral-melt partitioning ofmajor and minor elements at 22–-24.5 GPa. Earth Planet. Sci. Lett. 197, 117–-131(2002).78. Kilinc, A., Carmichael, I. S. E., Rivers, M. L.
& Sack, R. O. The ferric-ferrous ratioof natural silicate liquids equilibrated in air. Contrib. Mineral. Petrol. 83, 136–-140(1983).Acknowledgements The constructive reviews of C. Agee and K. Righter areacknowledged with thanks. B.J.W. acknowledges the award of an ARCFederation Fellowship.Author Information Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions.
The authors declare no competingfinancial interests. Correspondence and requests for materials should beaddressed to B.J.W. (bwood@els.mq.edu.au).© 2006 Nature Publishing Group833.