2006 Wood et al., Accretion of the Earth and segregation of its core (1119308), страница 6
Текст из файла (страница 6)
Thus, the Hf–W age of the Earth could reasonablyrefer to the earliest phases of core formation and the U–Pb age to thelast. To test this hypothesis properly it will be necessary to obtainexperimental data on the partitioning of Pb between silicates andmetals as a function of oxygen fugacity, pressure, temperature andsulphur content.The density of the liquid outer core is about 8% lower than pure Fealloy under core conditions, implying the presence of low-atomicnumber alloying elements.
Cosmochemical arguments suggest thatS, H and C are present at concentrations of 1.9, 0.1 and 0.2 wt%respectively. Si is a cosmochemically abundant element which dissolves readily in iron under reducing conditions and at high pressuresand temperatures. The accretion model discussed earlier, in whichincreases in oxygen fugacity accompany core segregation, leads(given a mantle Si content of 21 wt%; refs 3, 26) to 4–5% Si in thecore. The remaining potentially important component, oxygen, ismore difficult to constrain because the available experimental dataconflict with one another. Estimates based on some recently published data73 lead, under the conditions of core segregation impliedby siderophile element partitioning, to ,1 wt% oxygen in the core.Other recent data76 imply that the core should be richer in oxygenthan in silicon.
Clearly, more experimental data are needed to resolvethe question of the oxygen content of the core.1.2.ConclusionsChemical and isotopic measurements on the silicate part of theEarth combined with astronomical observations of young stars and3.Chambers, J. E. Planetary accretion in the inner solar system.
Earth Planet. Sci.Lett. 224, 241–-252 (2004).Kleine, T., Munker, C., Mezger, K. & Palme, H. Rapid accretion and early coreformation on asteroids and the terrestrial planets from Hf–-W chronometry.Nature 418, 952–-955 (2002).McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120,223–-253 (1995).© 2006 Nature Publishing Group831REVIEWS4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.832NATURE|Vol 441|15 June 2006Li, J. & Agee, C. B. Geochemistry of mantle-core differentiation at highpressure.
Nature 381, 686–-689 (1996).Righter, K. & Drake, M. J. Metal/silicate equilibrium in the early Earth–-Newconstraints from the volatile moderately siderophile elements Ga, Cu, P, andSn. Geochim. Cosmochim. Acta 64, 3581–-3597 (2000).Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth.Earth Planet. Sci. Lett. 236, 78–-95 (2005).Frost, D. J. et al. Experimental evidence for the existence of iron-rich metal inthe Earth’s lower mantle. Nature 428, 409–-412 (2004).O’Neill, H.
S. C. The origin of the Moon and the early history of the Earth—Achemical model. 2. The Earth. Geochim. Cosmochim. Acta 55, 1159–-1172 (1991).Wood, B. J. & Halliday, A. N. Cooling of the earth and core formation after thegiant impact. Nature 437, 1345–-1348 (2005).Youdin, A. N. & Shu, F. H. Planetesimal formation by gravitational instability.Astrophys.
J. 580, 494–-505 (2002).Poppe, T., Blum, J. & Henning, T. Analogous experiments on the stickiness ofmicron sized planetary dust. Astrophys. J. 533, 454–-471 (2000).Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula. Mon.Not. R. Astron. Soc. 180, 57–-70 (1977).Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–-20(1999).Leinhardt, Z.
M., Richardson, D. C. & Quinn, T. Direct N-body simulations ofrubble-pile collisions. Icarus 146, 133–-151 (2000).Wetherill, G. W. & Stewart, G. R. Formation of planetary embryos: effects offragmentation, low relative velocity, and independent variation of eccentricityand inclination. Icarus 106, 190–-209 (1993).Kokubo, E. & Ida, S. Oligarchic growth of protoplanets. Icarus 131, 171–-178 (1998).Weidenschilling, S.
J., Spaute, D., Davis, D. R., Marzari, F. & Ohtsuki, K.Accretional evolution of a planetesimal swarm. 2. The terrestrial zone. Icarus128, 429–-455 (1997).Taylor, S. R. & Norman, S. R. in Origin of the Earth (eds Newsom, H. E. & Jones,J. H.) 29–-44 (Oxford Univ. Press, New York, 1990).Yin, Q. Z. et al. A short timescale for terrestrial planet formation from Hf-Wchronometry of meteorites.
Nature 418, 949–-952 (2002).Stevenson, D. J. in Origin of the Earth (eds Newsom, H. E. & Drake, J. H.)231–-249 (Oxford Univ. Press, New York, 1990).Yoshino, T., Walter, M. J. & Katsura, T. Core formation in planetesimalstriggered by permeable flow. Nature 422, 154–-157 (2003).Ghosh, A. & McSween, H. Y. A thermal model for the differentiation ofAsteroid 4 Vesta. Icarus 134, 187–-206 (1998).Shukolyukov, A. & Lugmair, G. W. Live iron-60 in the early solar system.Science 259, 1138–-1142 (1993).Kunihiro, T., Rubin, A. E., McKeegan, K. D. & Wasson, J. T.
Initial 26Al/27Al incarbonaceous-chondrite chondrules: Too little 26Al to melt asteroids. Geochim.Cosmochim. Acta 68, 2947–-2957 (2004).Chambers, J. E. & Wetherill, G. W. Making the terrestrial planets: N-bodyintegrations of planetary embryos in three dimensions. Icarus 136, 304–-327(1998).Allegre, C. J., Poirier, J.-P., Humler, E.
& Hofmann, A. W. The chemicalcomposition of the Earth. Earth Planet. Sci. Lett. 134, 515–-526 (1995).Wasson, J. T. Meteorites: Their Record of Early Solar-System History(W.H. Freeman, New York, 1985).Drake, M. J. & Righter, K. Determining the composition of the Earth. Nature416, 33–-39 (2002).McDonough, W. F. in The Mantle and Core (ed. Carlson, R. W.) 547–-568(Elsevier-Pergamon, Oxford, 2003).Newsom, H. E.
in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.)273–-288 (Oxford Univ. Press, New York, 1990).O’Neill, H. S. C. & Palme, H. in The Earth’s Mantle–-Composition, Structure andEvolution (ed. Jackson, I.) 3–-127 (Cambridge Univ. Press, Cambridge, UK, 1998).Ringwood, A. E. Chemical evolution of the terrestrial planets. Geochim.Cosmochim.
Acta 30, 41–-104 (1966).Harper, C. L. Jr & Jacobsen, S. B. Evidence for 182Hf in the early Solar Systemand constraints on the timescale of terrestrial accretion and core formation.Geochim. Cosmochim. Acta 60, 1131–-1153 (1996).Arculus, R. J. & Delano, J. W. Siderophile element abundances in the uppermantle: Evidence for a sulfide signature and equilibrium with the core. Geochim.Cosmochim. Acta 45, 1331–-1343 (1981).Jones, J. H. & Drake, M. J.
Geochemical constraints on core formation in theEarth. Nature 322, 221–-228 (1986).Chou, C. L. Fractionation of siderophile elements in the Earth’s upper mantle.Proc. Ninth Lunar Sci. Conf., 219–-230 (1978).Wänke, H. Constitution of the terrestrial planets. Phil. Trans. R.
Soc. Lond. A303, 287–-302 (1981).Thibault, Y. & Walter, M. J. The influence of pressure and temperature on themetal-silicate partition coefficients of nickel and cobalt in a model C1 chondriteand implications for metal segregation in a deep magma ocean. Geochim.Cosmochim. Acta 59, 991–-1002 (1995).Righter, K., Drake, M. J. & Yaxley, G. Prediction of siderophile element metalsilicate partition coefficients to 20 GPa and 2800 degrees C: The effects ofpressure, temperature, oxygen fugacity, and silicate and metallic meltcompositions. Phys.
Earth Planet. Inter. 100, 115–-134 (1997).40. Li, J. & Agee, C. B. The effect of pressure, temperature, oxygen fugacity andcomposition on partitioning of nickel and cobalt between liquid Fe-Ni-S alloyand liquid silicate: Implications for the Earth’s core formation. Geochim.Cosmochim. Acta 65, 1821–-1832 (2001).41. Gessmann, C. K. & Rubie, D.
C. The effect of temperature on the partitioning ofnickel, cobalt, manganese, chromium, and vanadium at 9 GPa and constraintson formation of the Earth’s core. Geochim. Cosmochim. Acta 62, 867–-882(1998).42. Righter, K. & Drake, M. J. Metal-silicate equilibrium in a homogeneouslyaccreting earth: New results for Re. Earth Planet. Sci. Lett. 146, 541–-553 (1997).43. Righter, K. & Drake, M.
J. Effect of water on metal-silicate partitioning ofsiderophile elements: a high pressure and temperature terrestrial magmaocean and core formation. Earth Planet. Sci. Lett. 171, 383–-399 (1999).44. Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C. & Righter, K. Mechanisms ofmetal-silicate equilibration in the terrestrial magma ocean. Earth Planet.
Sci.Lett. 205, 239–-255 (2003).45. Stevenson, D. J. Models of the Earth’s Core. Science 214, 611–-619 (1981).46. Cameron, A. G. W. & Benz, W. Origin of the Moon and the single impacthypothesis IV. Icarus 92, 204–-216 (1991).47. Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the endof the Earth’s formation. Nature 412, 708–-712 (2001).48. Karato, S.-i. & Rama Murthy, V. Core formation and chemical equilibrium inthe Earth–-I. Physical considerations. Phys. Earth Planet.
Inter. 100, 61–-79(1997).49. Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys.Earth Planet. Inter. 100, 27–-39 (1997).50. Solomatov, V. S. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.)323–-360 (Univ. Arizona Press, Tucson, 2000).51. Chabot, N. L. & Agee, C. B. Core formation in the Earth and Moon: newexperimental constraints from V, Cr, and Mn.