Т.А. Леонтьева, В.С. Панферов, В.С. Серов - Задачи по теории функций комплексного переменного с решениями (1118152), страница 9
Текст из файла (страница 9)
qTo MO)KHO CKa3aTb oCXO.ll:HMOCTH 6eCKOHeqHoro IIpOH3Be,n:eHH.sI Il~=l4.42. IIycTb c - KOHCTaHTa, c*(1 + a,,z)?-1, -2, .... .lJ:OKa3aTb, qToTI~= 1 (1- _z_) e'"a6comoTHO cxo,n:11Tc.si: npH lzl < oo.c+n4.43. IIoKa3aTb, qTo np11 I z I > 1 6ecKoHeqHoe rrpomBe.n:eHHerr~..[r-( J-;;-rZ _,,] CXOAITTC•4.44.
HaifTH o6JiaCTH cxo1111MoCTH 6ecKoHeqHhIX npo113se.n:ett11H::1)n-(1-z")· 2)11=14) TI~_, cos~;'n-"""'s)22(1-)·_!_n2 ' 23)n- (I+~)e-''"·n11=1'Il~= 1 ( sin;;~n)} 6) n~_,c1 + z2").(-1)"+14.45. ,UoKa3aTb, qTQ npoH3se.n:ett11e TI~=' ( 1+ ~)CXOAHTC.sInpH Re z > Yi ' a6comOTHO CXOAHTC.sI IIpH Re z > 1.n·Jn~4.46 .
.lJ:oKa3aTh, qTQ npoH3se,n:ett11e [[= 1- - e · " cxo1111TC5I a6z + /1COJIIOTHO BO sceH: KOMIIJieKCHOH IIJIOCKOCTH C, KpOMe ToqeK z = -1,-2, .... 3To IIpOH3Be,n:eHHe o603HaqaIOT r(z+l) H Ha3bIBaIOT 2aMMa-PYHKU,Ueu.1I :ln114.47 . .lJ:oKa3aTh ¢opAtYJ1Y 3Wiepa: f(z) = Iim---1._e_ __,,_,_ z (z+ l) · · · (z+n)53DOCJIE.D:OBATEJihHOCHL P.51.D:hl, DPOI13BE.D:EHH5l4.48 . .UoKa3aTb, qTO:1) f(z + 1) = z f(z);2) f(m+ 1) = m!.4.49. ,I(oKa3aTh rjJop.Mylly Beiiepuanpacca:[f(z + l)] -i= e":TI~= 1 ( l + ~) e-:tu,c - fIOCT05IHHa5I 3Iinepa.4.50.
IloKa3aTh, qTO rrptt a,~=f: -1, -2, ...TI~-, nca + fJ + n) = rca + o rCfJ+ 1).- (a+n)(fJ+n)f(a+(J+n)4.51. ,I(oKa3aTh, qTO cne.uy10rutte 6ecKoHeqHhie rrpomse,neHM5ICXO.U5ITC5I paBHOMepHo Ha yKa3aHHhIX o6nacrnx:1)n-n=l(1-z2) ' lzl $2) TI~= 1 (1 +~) e-'R < =·'n-.,1",I z IS R < =;23) IT~=/l+z"),lzl$r<l;4) IT~=l(l+z "),lzl$r<l.4.52 .
.UoKa3aTh, qTO ecntt p5I.U L~=il J,, (z) I cxo,nHTC5IMepHoHaMHO:>KecTBeZ,TOM 6ecKOHeqHoepaBHO-rrpott3Be,neHtteIT~=I (1 + f,, (z)) CXO.D;MTC5I paBHOMepHO Ha MHO:>KeCTBe Z.4.53. IIycTh 6eCKOHeqHoe rrpOH3Be,UeHHe IT~=l (1 + J,, (z)) CXO,UHTC5I paBHOMepHo Ha MHO:>KecTBe Z. Cne.uyeT JIH oTcIO,na, 'ITO p5I.UI~=I J,, (z) cxo.n;HTC5I paBHOMepHo Ha MHO:>KecTBe Z?4.54. IIycTh p5I.U I,~=I J,, (z) cxo,n;ttTC5I pasHoMeptto Ha MHO:>KecTBeZ.
CJie,nyeT JIM OTCIO.Ua, qTo Ha MHO:>KecTBe Z cxo;uffc5I paBHOMepHo6eCKOHeqHOe rrpOH3Be,UeHMe IT~=I (1 + f,, (z))?4.55 . .LJ:oKa3aTh, qTo cne,n;y10m11e 6ecKoHeqHhie npoH3Be,n;eHH5I rrpe.n;CTaBJI5IIOT co6oli HenpephIBHhie cpyttKUMM B YKa3aHHhIX o6nacrnx:1) IT~=I (1 + z" ), Iz I< 1;2)IT~ (1+..£)e-~11=lIIIz I<IT ,,= cos2:.,ll~3)'lzl<'1l710000 ,z!l Z·'z "#- n(2k + l);2TT/aea 4544)IT==11n · z I z; I<oo,z;:;t ktr;-sm-,1zn5) IT~= 1 (1 + c-1r ;) I z I<7)n=n=8)n=,(1+~).lzl<2.2"6)z :;t c-1r+ 1 n;,ch...£,2"Iz I<00 ,fl=Iz :;ti 2"-cos...£,2"I z I<00 ,11=1z :;t 2 1c2k + l)n;1(2k + 1)n;11-11=4.56.
IIycTbn E N,0011 p}l,uBe,UeHH:enocJie,uoBaTeJibHOCTbL~=I (1- Ia11 !) < 00 •a-z la Irr~= 1 -'-1- a, z•-'a,{a"}TaKOBa,qroIa11 I< 1,.[(oKa3aTh, qro 6ecKoHeqttoe npo113-CXO,UHTC}la6COJIIOTHOI1paBHOMepHOBttyrp11 e,nHHHqttoro Kpyra I z I < 1 H tte rrpeBocxo,nHT rro Mo,uymo 1.I'Raea 5,LJ;H <1><1> EPEHD;HPYEMOCTh <l>YHKD;HHKOMIIJIEKCHOfO IIEPEMEHHOfOKoMrrneKCH03Haqtta.sr cpyttKU.I1.srf(t)ro nepeMeHHOfOt=f 1(t) + if2(t) .ueH:cTBHTeJihHO-Ha3bJBaeTC.sl ourj;pepe1-t4upyeMOU 8 HeKOTOpOHJnOl/Ke to, ecmi: B 3TOH TOqKe .u11cpcpepeHu11pyeMbI .ueHCTBHTeJibHbiecpyHKUHHf1(t),f2(t).= u(x, y) + iv(x, y) (z = x + iy,KoMnJieKCH03HaqHa.sr cpyHKUH.srfiz)a v(x, y), u(x, y) - .uei1CTBMTeJibHbie cpyHKUHH) KOMnJieKCHOfO nepeMeHHOfO z,onpe.ueJieHHa~B HeKoTopoH: oKpeCTHOCTH ToqKH z 0 EHa3bIBaeTC5I .UHcpcpepeHUHpyeMOH B TQqKe.1lffi..:>z ~ oC,Zo, eCJIH cyiuecrnyeT npe.ueJIf(z 0 + b..z)- f(z 0) -_ f'( Z ) ,0b..zKOTOpbitt Ha3brnaeTc.sr npoU3eoo1-tou cpyHKUHH fiz) B ToqKe z 0 .
EcJIHcpyHKUH5I .u11cpcpepeHu11pyeMa B ToqKe Zo, TO OHa H HerrpepbIBHa BToqKe z 0.ECJIH cymecrnyIOT npOM3BO.UHbJe cpyHKUHH f(z), g(z) B TOqKe Zo,TO B 3TOH TOqKe cymecTByIOT rrpOI13BO.UHbie cpyHKUHH fiz) ± g(z),f(z)·g(z), fiz) I g(z) (g(z0) =f. 0) H cnpaae.umrnhI paaettcrna(! ± g)' (zo) = J'(zo) ± g'(zo)'(! · g)' (zo) = f'(zo)g(zo)+ f(zo)g'(zo),(! / g)' (zo) = J'(zo)g(zo)2(glfacymecTBOBaHirn IIpOH3BO.UHOH~(zo)g'(zo)' g(zo) :z: 0.ZoJ'(zo)B TQqKe Zo=Xo + iyo c He-o6XO.UMMOCTblO BbITeKaIOT CJie.uy10iu11e paBeHCTBa:u~(x0 ,y0 )= v~(x1nY0 ),u~(x 0 ,y0 ) =-v:,(x0 ,y0 ),KOTOpbie tta3bIBaIOTc.sr ycJ1oeuf1.MU Koiuu-PUAtaHa (CR). EcJIH BBeCTMCJie.UyIOIUHe o603HaqeHH.sl:I'JZaea 556TO 6y.uyT cnpaBe.umrnhI COOTHOillemrn:J'(zo)~~ (xo, Yo),=1f (z0 ) =J'(zo):~ (z= -i:~ (xo, Yo),:~ (z = 0.0 ),0)TaK11M o6pa3oM, Beptta cne.n.y10rn;aJ1TeopeMa.
<l>yHKQH.si:fiz) = u(x, y) + iv(x, y) .umpcpepeHuttpyeMa B= Xo + iyo TOrJ.J;a H TOJlhKO TOrJ.J;a, KOrJ.J;a cpyHKUMM u(x, y),TOqKe Zov(x, y) .umpcpepeHuttpyeMhI B TOqKe (xo, Yo) H B '.HOH rnqKe BhinOJI-(CR).Dc CH.sIIOTC.sI ycJIOBM.sIMttmKecrno3TOroMHO)l{eCTBaHa3hrnaeTc.si: omKpblmblM, ecm1 Ka)l{.ua.si: ToqKaCOJ.J;ep)J(MTC.sIBHeMoKpecTHOCThIO, T. e . .un.si: n1060H: TOqKH z 0TaKoe, qrn {z: lz - zolTaKoeR> 0, qTo {z: I z I> R}Mtto)l{ecrnoTOt:fKH< R} C D.3TOroDcC3aMKHyToroDc CHeKOTOpoH:(Ecmi: z 0= ooE D,To ttaH:.ueTc.si:CD).MO)l{HOcoe,llHHHThD.0TKpbITOe CB.sI3HOe MHO)l{eCTBO06nacThcE D HaH:.ueTc.si: q11cno R > 0,Ha3hrnaeTc.si: C8fl3HblM,MHO)l{eCTBauenMKOM Jie)J(amdi sBMeCTeDcecJIM n106h1e .useKpHBOH)l(op.uatta,c Ha3bIBaeTC.sI o6JZaCmb!O.tta3hrnaeTc.si: 001-1oceJ13HOU, ecJIH .un.si: n106oroKOHTypa)l(opJ.J;atta,BHyTpeHHOCTh TaK)l{e Jie)l{HT BD.Jie)J(ameroBo6nacTHD,ero06nacTh, He .si:Bn.si:10ma.si:c.si: O.llHO-CB.sI3HOH, Ha3bIBaeTC.sI 1WH020CBfl3HOLl.57JlJ1ct>ct>EPEHUI1PYEMOCTh ct>YHKUl1MDc CMtto)l(ecrnoC\ DHa3bIBaeTC5I 3aMK1-1ymb1A1, ecm1 MHO)l(ecrnoHBnHeTc5! OTKpbITbIM.0.utto3Ha1rna51 cpyHKl.l:I-151"°'f(z),Ha3bIBaeTcH 001-10J1ucn11-1ou, ecm1 .unH mo6b1x TOl!eK*TaKHX, 'ITO Z1Z2, HMeeM f(z1)EcnH cpyHKU:H5I CD= f(z)Manoi{O.UHOnHCTHOi1:OKpeCTHOCTHHBf(z2) .,LIJHpcpepeHU:HpyeMaTO'!KHOKpecTHOCTHo6paTHa5I cpyHKU:l15! Z =z 1, z 2*OKpeCTHOCTH TO'IKH Zo H B 3TOH OKpeCTHOCTHTOl!HODonpe.ueneHHa5! B o6nacrnZoJ'(z)B*0,ffio=f(zo)C,E DHHeKOTOpof.i:TO B L(OCTa-cpyHKU:H5I f(z)TO'!KHc5!Bn5!eTC5!cyruecrnyeTF 1 (w), KOTOpa5! .UHcpcpepeHUHpyeMa B 3TOHOKpeCTHOCTl1 TOqK11 co 0 , 11 cnpase.un11sa cpopMyna .umpcpepettu11poBaH115! o6paTHOH cpyHKU11H:0.UH03HaqHa5! cpyHKUH5! f(z) Ha3bIBaeTC5! a1-1aJlumu1teCKOU (HHOr.uaHCilOJib3YlOTC:K n ::pM11Hbl "rOJIOMOpcptta'1", "peryJrnpttajJ") B o6J1aCTl1D, ecJrn Otta .u11cpcpepettu11pyeMa B Ka)l(.uoi1: ToqKe 3TOH o6nacTH.Attan11THqHoCTb B TOqKe 03HaqaeT attanHTHqHOCTb B HeKoTopoi1:OKpeCTHOCTH 3TOH TOqKH.
<PyHKUH5I f(z) Ha3bIBaeTC5I aHan11T11qecKOH1B TQqKe z oo, ecn11 cpyttKUH5! g(z) j{z- ) aHanHTHl!Ha B TQqKe z 0.===reoMeTpH'leCKHH CMhlCJJ npOHJBOt(HOHBKa)KL(OH ToqKe Zo, B KOTOpOHf I ( z)*0,np11 OT06pa)l(eHl111f11MeeT MeCTO coxpattett11e (KottcepsaT113M) yrnos no Ben11q11He 11 noHarrpaBneHmo OTcqeTa Me)l(.uy mo6bIMl1 .UBYM5! rna,UKHM11 KpHBbIMH)l{op.uatta, rrepeceKaIOIUHMHCj{ B TOqKe Zo, 11 HX o6pa3aMH npH OT06pa)l(eHHl1fKpoMe Toro, B 3TOM cnyqae Ben11q11HaI f 1(z 0 ) I cosna-.uaeT c 11cKa)l(ett11eM Macnna6a np11 0To6pa)l(ett1111f11 3TO 11cKa)l(ett11eOL(HO 11 TO )Ke no BCeM HanpaBJ1eHH5IM, Bb!XO.U5!llll1M 113 TOqKJ1 Zo.Ecn11 cpyttKU115! /(~) aHan11Twrna B 06nacT11 G, a cpyHKU115I <p(z)attan11T11qHa B 06nacT11 D 11 MHO)l(ecrno 3HaqeHl1H cpyHKUl111 <p(z)j{Bn5!eTC5! o6naCTbIO 11 co.uep)l(HTCj{ BG,TO B 06nacT11Donpe.ueneHacynep1103ui/U5l py1-1KL{Uttf 11 <p - cpyHKU115If(cp(z)), KOTopa5! attan11T11q-Ha B D, H cnpaBenmrna cpopMyJia IIHclJclJepemrnpoBamrn cynepno3HUHH:J,'(cp(z)) = J.'(cp(z)) cp'( z).58I'JZaea 55.1.HaHTH BCe TO'IKH zpyeMbl cpyttKUHH:1) Re z; 2)z;=x + iy, B KOTOpbIX .ump¢epeHUI1-23) lzl ; 4) lzl ; 5) z Re z;~; 9) 2.xy - i(/ -8)y\6) x2y2;?•27) x- + iy;10) x + iy2; 11) z- 1 12)z 2 • z;213) z · z ; 14) (az + b) I (cz + d), c ct 0, ad ct be;15)sinx+icosx; 16)cosx+isinx;17)ex +i1/ ;18)e.r+isinx;19)tgx+ictg y.5.2.
.[(OKa3aTb amurnTH4HOCTb BCIO.LlY BCJle)lyIOll.lHX cpyHKUHH:1)z", n -c H HaHTH npOH3BO)J,HbieHaTypa.rrbttoe;2) R(z) = P(z) I Q(z) - pauttOHaJibHaH cpyttKUHH (KpOMe TOLieK z,B KaTopbIX Q(z) = O);3) e2;4) e iz;5) sin z; 6) cos z;7) ch z;8) sh z;9) ctg z (KpOMe T04eK z, B KOTOpbIX sin z = 0);10) tgz (KpOMe ToqeK Z, B KOTOpbIX cos z = 0);11) th z (KpOMe ToqeK Z, B KOTOpbIX ch z = O);12) cth z (KpOMe ToqeK Z, B KOTOphIX sh z = 0);13) sin (e 2 ); 14) Z"e -z, /l - HaTypa.ribHOe; 15) (z + l/z) /2, Z oF 0.S.3.
IlOKa3aTh, qTQ cpyHKUHH!z += 0e-l /z'J( z) =0,'z= 0'aHa.rrttTttqHa BCIOJlY B C , KpoMe T04KH z = 0, a ycnoBttH (CR) BhmonHHIOTCH BCIO.LlY B C.S.4 . .[(oKa3aTh, qrn ecmi: cpyHKUHH f(z) atta.rrttrnqtta B o6naCTHDcCH BCIOJlY B D BbinOJIHHeTcH O.LlHO H3 ycnos11H::1) Ref(z) =canst; 2) Imf(z) =canst;3) IJCz) I= canst;4) argf(z) =canst,TO f(z) - KOHCTaHTa BCIOJW B o6naCTH D.S.S. IIycTb cpyttKuHH f(z) = u + iv atta.JIHTH4Ha B o6nacTH DH BCIO.LlY B DcCu(x, y ) = cp(v(x, y)), cp(t) - ;:i:ettCTBHTeJibH03Ha4HaH,59,nl1<D<DEPEHUI1PYEMOCTb <DYHKUI1HCTporo MOHOTOHHa5! l1 HenpepbIBHO .umpcpepeHuHpyeMa5! cpyHKUl15! npH-oo < t < oo .