Т.А. Леонтьева, В.С. Панферов, В.С. Серов - Задачи по теории функций комплексного переменного с решениями (1118152), страница 6
Текст из файла (страница 6)
HEI1PEPbIBHOCTbIlycTb MHO)!(eCTBOz cc -330611aCTh orrpe):(eJieHl15I ¢YHKU:11Hf,(z) 11 fiz), a Zo - npe.uenhHaH TOqKa MHO)!(ecrna Z. Tor.ua, ecmi:cyw,ecrny10T KOHeqH&Ie npe.ue11&H&1e 3Haqemrn cpyHKu11H:f1(z) 11f2(z)B TQqKe Zo, TO cyw,ecTByFOT KOHeqH&Ie rrpe.ueJibHbie 3HaqeHl15! cpyHKu11H:f1 (z) ±fz(z), f1(z)J2(z) B TOqKe Zo 11lim(J; (z) ± f 2 (z)) = lim J; (z) ± lim f 2 ( z),:-+:o.::-+:o:-+:olim(J; (z) · f 2 (z))z-+.:o=:-+:alim J; (z) · lim f 2 (z).:-+:oEcJI11, KpOMe Toro, rrpe.unoJIO)!(Jffh, qTo lim f 2(z)-:!- 0, TO cyw,ecrny:-+.:oeT KOHeqHoe npe.ueJI&Hoe 3HaqeH11e cpyHKu1111J; (z) · f 2- 1(z)11lim (J; (z) · f 2- 1(z)) = lim J; (z) · (lim f 2 (z)) - 1•::-+.:::oIlycTb MHO)!(eCTBO~-+.:oz cceCTh 0611aCTh onpe):(eJiemrn cjJyHK-u:1111.ftz), a TOqKa Zo E Z RBm1eTC5! rrpe,neJI&HOM .UJIR Z. <PyHKU115!.ftz)Ha3&rnaeTC5! 1-1enpepbl61-1ou B mO'-lKe ZQ, ecmr lim f (z) = f(z 0).
He.::-+:o=npepbIBHOCTh B TOqKe Zo 00 03HaqaeT cyrn,eCTBOBaH11e KOHeqttoronpe.ueJibHOfO 3HaqeHl15I B TOqKe Zo = 00.<PyHKUl15I, HerrpepbIBHa5I B Ka)!(,UOM TOqKe MHO)!(eCTBa3hIBaeTC5I HenpepbZBHOU Ha MHO:J/Cecmee Z.=z cc, Ha-=ITycTh f(z)u(x,y) + iv(x,y), z x + iy. ,n:1151 rnro, qrn6b1¢YHKU:115I .ftz) 6bma HenpepbIBHOH B TOqKe ZQ, Heo6XO.U11MO 11 .UOCTaToqHO, qT06b1 .ueH:CTBMTeJibHbie cpyHKUl111 u(x, y) 11 v(x, y) nepeMeHHbIX x, y 6&IJil1 HenpepbIBHhI B TOqKe (xo, Yo).Ern11 cpyHKUl111 J, (z) 11 f2(z) HenpepbIBHbl B TOqKe Zo.
TO cpyHKUHHfi(z) ±f2(z),J1(z)J2(z) HJ; (z) · f 2- 1 (z)(ecJIH Ji(:zo)i- 0) Herrpep&IBHhIB TOqKe ZQ.IlycTh cpyHKU115! .ftz) onpe.ueJieHa Ha MHOJKecrne Z H Herrpep&rnHas ToqKe Zo E Z, a cpyHKUl15! g(w) orrpe,neJieHa Ha MHOJKecrne 3HaqeHl1H cPYHKUl111 flz) 11 HerrpepbIBHa B TOqKecpyHKUIUl g(j(z)) ttenpepbIBHa B TOqKe ZQ.CDo=.ft:zo). Tor.ua CJI0)!(Ha5!I'Jzaea 334cDyttKU115I f(z), orrpe.ueJieHHa5I Ha MHO:>Kecrne Z c C , Ha3hJBaeTrn02paHuttem-t0il Ha Z, ecJI11 3M> 0: 't/z E Z =>If (z)M.
CrrpaBe.u-I<JIHBa cJie.uy10rua5I TeopeMa.TeopeMa. Bc5IKa5I HenpephrnHa5I Ha KOMrraKTe Z c C cpyHKUl15I5IBJI5IeTC5I orpaH11qeHHOH Ha 3TOM KOMJlaKTe, a ee MO.UYJih .uocniraeTHa MHO:>Kecrne TOqHo:H BepxHeH H HH:>KHeH rpaHeH<PyHKUH5I f(z) Ha3bJBaeTC5I pa61io.11tepHO Henpepbl6HOU Ha MHO:>Ke-zCTBezcC , ecmi:'tf £ > 0 35(£) > 0 :'tfz" z2E Z, I z,- z2 I< 5 =>If (z, )-f (z2 )I<&.CnpaBe.UJIHBa cne.uy10rua5I TeopeMa.TeopeMa KattTopa.
HerrpephIBHa5I Ha KOMrraKTe cpyHKUH5I paBHOMepHo HerrpepbIBHa Ha 3TOM KOMilaKTe.Mooylle.M Henpepbl6Hocmu w(j, 8) cpyHKUHH j(z), onpe.ueJieHtto:HHa MHO:>KeCTBez c c , Ha3hJBaeTC5I QJYHKUH5I nepeMeHHOro 8 > 0 BH,Uaw(f ,5) = sup1:,-:,l<dIJ( zJ - f(z 2 ) J.: 1.:,EZ<PyHKUH5If(z) paBHOMepHO HenpepbIBHa Ha MHO:>Kecrne z cc Tor.ua11 TOJibKO Tor.ua, Kor.ua ee MO.UYJib HerrpepbIBHOCTH w(j, 8) Ha3TOM MHO)l(eCTBe CTpeMI1TC5I K 0 rrp11 8 - +O.3JieMeHTapHbie QJYHKU.HH KOMUJieKCHOro nepeMeuuoro1. <PyHKUH5I P,,( z) = a0 z'' + a,z''- 1+ ... + a 11 , r.ne ak, k = 0,1, ...
, 11 ,KOMilJieKCHbJe q11cna Haoi- 0, Ha3hIBaeTC5IMH020l/JleHOM CTerreHH 11.2. <t>yHKUH5I R( z) =a0 z 11 + ... +a11b0 z'" + ... + b, 11,r.ue a0 7' 0, b0 7' 0, Ha3hrnaeTC5IpatfUOHGJlbHOU rjJyHKL/Ueii.3. <PyHKUH5I e: =e'(cosy+isiny), z =x+iy, Ha3hrnaeTc5I 110Ka3antellbHoii.4. Tpu20Ho.11temputtecKue rjJyHKtfuu:sin z = (e;: _ e-i: ) I 2i, cos z = (e;:+ e-i:) / 2,sm zcosztg z = - - , ctgz =-.- .coszsm z5. I'u11ep60JnttteCKUe rjJyHKtfUU:<DYHKIJJU1 KOMI1JIEKCHOro I1EPEMEHHOro. HEI1PEPhIBHOCThe + e0ch z =023.1 .
.il:OKa3aTbsh z =e0e-:-2sh zch zth z = - - , cth z = - - .ch zsh z3KBl1BaJieHTHOCTb orrpe.n:eneHHH rrpe.n:eJibHOro 3Ha-qeHH5I cpyttKU:HH s ToqKe ITO Koum 11 ITO3.2. Jl:oKa:JaTb35f ei1:tte.Kp11Tep11i1: Koum cyruecrnosatt115I Kotteqttoro ITpe-.n:eJibHOro 3HaqeHH5I cpyHKU:HH B TOqKe.3.3. IIycTbToqKa z 0 EcpyHKU:H5If(z) oITpe.n:eneHa Ha MHO)Kecrne Z c C HZ.
Jl:oKa3aTb, qTo ecn11 cyruecrnyeT KOHeqHoe ITpe.n:enb-Hoe 3Haqemre cpyHKWIH j(z) B ToqKe Zo, TO ttai1:.n:eTC5I OKpeCTHOCTbTOqK11 Zo, ITp11Ha;:i:Jie)Karua5IZ, Ha KOTOpOH cpyHKU:115Ij(Z) orpaH11qeHa.3.4 . .il:OKa3aTb, qTo eCJil1 cpyHKU:115I f(z) HeITpepbIBHa Ha MHO)KeCTsez cc ' TO cpyHKU:115I [f(z)I TaK)Ke HeITpepbIBHa Ha z.3.5. IIycTb TOqKa z 0 = oo 5IBJI5IeTc5I rrpe.n:enbHOH )1JI5I MHO)KeCTBa ZH cpyHKU:H5I f(z) HeITpepbIBHa HapaHHt-IeHa Ha Z?= oo 5IBJI5IeTc5I ITpe.n:enbHOH )1JI5I MHO:>KeCTBa Z,3.6.
IIycTb ToqKa zcpyHKU:H5I f(z) HeITpepbIBHa Halim:--->co, :EZfz. Cne.n:yeT JIH OTCIO)la, qTO f(z) or-Z11 cyruecrnyeT KOHeqHbIH ITpe.n:en( z) . Cne.n:yeT JIH OTcIO.n:a, qrn j(z) orpaH11qeHa Ha3.7. Jl:oKa3aTb,qTQ eCJIH cpyHKU:115If(z) HeITpepbIBHa Ha5IBJI5IeTC5I orpaHHqeHHOH Ha3.8. IIycTbcpyttKU:H5I HeITpepbIBHa Ha MHO)Kecrnezc cJl:oKa3aTb,qToTOe MHO)KeCTBO 1133.11. Jl:oKa3aTb,OHaHeITpepbIBHa5IZ c C.Cneny-Z?Ha3aMKHYTOMciJyHKUH5I 5IBJI5IeTC5I orpaHHqeHHOH Ha3.10 . .D:oKa3aTb,c' TOc.eT n11 oTcIO.n:a, qTo OHa orpaHH'IeHa Ha3.9.Z?MHO:>KeCTBez.YTO HeITpepbIBHa5I cpyHKU:H5I rrepeBO)lHT 3aMKHY-cB 3aMKHyroe MHO)l(eCTBO.qTo ITp11 oT06pa:>KeH1111, ocyruecTBJI5IeMOM HeITpe-pbIBHOi1 cpyHKU:HeH, o6pa3 KOMIIaKTa 5IBJI5IeTC5I KOMIIaKTOM.3.12 . .D:oKa3aTb,qTO rrp11 0To6pa)KeH1111, ocyruecTBJI5IeMoM HeITpe-pbrnHoi1 cpyHKU:HeH, npoo6pa3 OTKpbITOro MHO:>KeCTBa 5IBmieTC5I OTKpbITbIM, ITpoo6pa3 3aMKHYTOro MHO:>KeCTBa 3aMKHyT.Dwea 3363.13.
IIoKa3aTh, qTo yrnep:>K.uem1e o TOM, qTo npH HenpephIBHOMOT06pa:>KeHHH o6pa3 OTKpbITOfO MHO:>Kecrna OTKpbIT, HeBepHO.3.14 . .1J:oKa3aTh TeopeMy KaHTopa.3.15 . .1J:oKa3aTb, qTO eCJIH cpyHKUI15l fi.z) HenpepbIBHa HaOHa paBHOMepHO HenpepbIBHa Hac'TOc.3.16. IIycTh cpyHKUH5I paBHOMepHo HenpephrnHa Ha MHO:>KecrneZc C . Cne.uyeT JIH OTCIO.Ua, qTo oHa orpaH11qeHa Ha Z?3.17. IIycTh cPYHKUHH paBHOMepHo HenpephIBHa Ha Ka:>KJJ:OM H3MHO:>Kecrn Z1H Z2. Cne.uyeT JIH 0Tc10.ua, qrn oHa 6y.ueT paBHOMepHoHerrpepbIBHa Ha MHO:>Kecrne Z 1U Zi?3.18. IIycn; cpyHKUHH pasHoMepHo HerrpephrnHa Ha Ka)l(JJ:OM mKOMrraKTOB Z 111 Z2. Cne.uyeT JIH 0Tc10.ua, qTo oHa 6y.ueT paBHOMepHoHenpepbIBHa Ha MHO)l(ecrne Z 1U Z 2?3.19.
BepHo JIH yrnep:>K.UeHHe o TOM, qrn HenpepbIBHaH Ha 3aMKttyroM MHO:IKCCTBC cpyttKQH>I >IBJI>ICTC>I paBHOMeptto ttenpepbIBHOH na3TOM MHO)l(eCTBe?3.20. IIp11secTH npHMep HenpepbIBHOH H orpaH11qeHHOH Ha MHO)l(eCTBecpyHKUHH, He HBJIHIOIUeHCH paBHOMepHO HenpepbIBHOH Ha3TOM MHO)l(eCTBe, eCJIH:zz2) z 1)orpaH11qeHHOe MHO)l(eCTBO;HeorpaHHqeHHOe MHO:>KeCTBO.3.21. IIycTb TOqKaZo= 00 HBJIHeTCH npe.ueJibHOH .[(JIH MHO:>Kecrnaz cc ' cpyHKUH5l fi.z) HenpephIBHa Ha z I1 cyrn;ecrnyeT KOHeqHbIHrrpe,n:en lim f (z).
Crre,n:yeT JIH 0Tc10,n:a, qTQ cpyHKUH5I fi.z) pas.:-+ooHOMepHo HerrpepbIBHa Ha Z?3.22. IIycTh TOqKa z0 = oo HBJIHeTCH npe.neJihHOH .[(JIH MHO)l(ecTBaZ c C .If cpyHKUHHfi.z) paBHOMepHo HenpephIBHa Ha Z. Crre,n:yeT JIHOTCIO,n:a, qTo cyrn;ecrnyeT KOHeqHhIH npe,n:err limf(z)?::~oo3.23. IIycTh Z - orpaH11qeHHOe MHO)l(eCTBo, a Z - ero 3aMhIKaHHe . .ll:oKa3aTb, qTO ,[(JIH TOfO qrnfar cPYHKUHH fi.z), orrpe,n:eJieHHaH HHenpepbIBHaH Ha Z, Morna 6hITh npo.uon:>KeHa Ha Z .uo HenpepbIBHOH<l>YHKUI1l1 KOMTIJIEKCHOro TIEPEMEHHOro. HEITPEPbIBHOCTb37<i>YHKUl111, Heo6XO)J,11MO 11 )J,OCTaTOqHo, qrnfa1.f(z) 6bma paBHOMepHOHenpepbIBHOH Haz.3.24.
IIycTb <i>YHKUl15I j(z) onpe.ueJieHa Ha MHO:>Kecrne Z c C 11ro(j, 8) - ee MO.UYJib HenpepbIBHOCTl1. ,[(oKa3aTb, qTQ )J,JI5I paBHOMepHOH HenpepbIBHOCTl1 cpyHKUl111 j(z) Ha MHO)KeCTBe.UOCTaTOqHo, qrnfa1 lim (J)(j' <5) = 0.z He06XO.U11MO 11a·-->+O3.25. ,[(OKa3aTb, qTQ cpyHKUH5I e= o6Jia.uaeT CJie,UyIOIU11MH CBOHCTBaMH:1) e=1 • e='=e=,+=,;2) Ie= I= eRe:;23) e=+ k1ri =e=,k=O,±l,±2, ... ;4) e=-:t-0,zEC;S)ecJIH e= =e=+',,, TO (J)=i2k1l, k=0,±1,±2, ...
;6) e= HenpepbIBHa Ha C ;7) He cyruecrnyeT lime= ;: ~oo8) e= npHHl1MaeT .uei1CTBl1TeJibHbie 3HaqeHl15I TOJlbKO B ToqKaxz = x + ink, x E R, k = 0, ±1, ±2, ....9) e= npHHHMaeT'IHCTO MHHMbie 3Ha'ieHH}I TOJlbKO B TO'!Kaxz = x + i( n/2 + nk), x E R, k = 0, ±1, ±2, ....10) e== e=.3.26. ,[(JIH cpyHKUl1H sin z 11 cos z .uoKa3aTb cJie.uy10m11e yrnep:>K,Uemrn:1) sin (-z) = -sin z, cos (-z) =cos z;222) sin z + cos z = 1;3) sin (z + k-rr) = (- l)k sin z, cos (z + nk)=(-llcosz,k=0,±1,±2, ... ;4) sin (z + n/2) =cos z, cos (z + n/2) = -sin z;5) sin (z1 + z2) =sin z1 cos z2 + cos z1 sin z2,cos (z 1+ z2) =cos z 1cos z2 - sin z1 sin z2;6) sin z 1+sin z2= 2 sin ((z1 + z2) I 2) cos ((z1 - z2) I 2),cos z 1+ cos z2= 2 cos ((z1 + z2) I 2) cos ((z1 - z2) I 2);7) sin iz =i sh z, cos iz =ch z;8) eCJil1 Z = X + iy, TORe sin z = sin x ch y, Re cos z =cos x ch y,DwBa338Im sin z =cos x shy, Im cos z =-sin x shy9) ecm1z =x + iy, TOIsin z I = ~,-sh_1_y_+_s-in_1 _x,Icos z I = ~ch 2 y - sin 2 x ;2I sin z I= ~ch 2 y - cos 2 x, I cos z I= ~sh y+ cos 2 x10) )l.OKa3aTh, qTOecm1 sin z= 0, TO z = k11, k = 0, ±1, ±2, ...
,ecmi: cos z = 0, TO z = 11/2 + k11, k = 0, ±1, ±2, ... ;11) HaHTH MHO)KeCTBO TOqeK, B KOTOpbIX H sin z, H cos z rrpHHHMaIOT )l,eHCTBHTeJibHbie 3HaqeHmr;12) HaHTH MHO)KeCTBO ToqeK, B KOTOpbIX H sin z, H cos z rrpHHHMaIOT qHCTO MHHMhie 3HaqeHmI;13) .uoKa3aTh, qTo cpyHKUHH sin z H cos z HerrpepbIBHhI Ha C;14) .uoKa3aTh, qTO He cyruecrnyeT limsin z H lim cos z;:--+ooJl--+oo15) .uoKa3aTh, qTo .umr z = x + iy crrpaBe)l.JIHBhI HepaBeHcrnaIshy I~icosz I ~chy, Ishy l~lsinz l~chy;16) )l.OKa3aTb, qTo )l.JI5Isin z = sm z , cos z = cosz = x + iy crrpaBe)l,JIHBhI paBeHCTBaz3.27.
,[(JI5I cpyHKUHH tg Z H ctg Za) .uoKa3aTh cJie.uy10rutte yrnep)K.ueHtt5I:1) tg (-z) = -tg z,ctg (-z) = -ctg (z);2) tg (z + krr) = tg z, ctg (z +kn)= ctg z, k = 0, ±1, ±2, ... ;3) tg (z + 11/2) = -ctg z;4) tg (iz) =i th z, ctg (iz) = i cth z;5) eCJIH Z = X + iy, TOsin2xsin 2x,Retgz =, Rectgz =ch2y-cos2xcos2x+ch2ysh2ysh2yIm to7 = - - - - - - Imctg z = - - - - - o~ cos2x+ch2ych2y - cos 2x6) eCJIH Z = X + iy, TOltgzl=ch2y-cos2x,ch2y+cos2xIctg z I=ch 2 y + cos 2x .ch 2 y - cos 2x '<!>YHKUI1I1 KOMITJIEKCHOrO ITEPEMEHHOro.