Главная » Просмотр файлов » Антидемидович 5 - ДУ

Антидемидович 5 - ДУ (1113366), страница 43

Файл №1113366 Антидемидович 5 - ДУ (Антидемидович) 43 страницаАнтидемидович 5 - ДУ (1113366) страница 432019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 43)

М 429. й + 5А + 2у + у = О, Зх + 5х + у + Зу = О. < Полагая х = Ае"', у = Ве"', как и в предыдущем примере, имеем А(Л + 5Л) + В(2Л -ь 1) = О, А(ЗЛ + 5) + В(Л+ 3) = О, (1) откуда, учитывая условие А и' О н В зе О, находим Л! — — Л, = 1, Лэ = -1.

Частные решения, соответствующие простому корню, имеют шщ: -! -! хз = Азе, уз = Взе Связь между Аз и Вз находим из системы (1) известным способом: Вз — — -4Аз. Поэтому, по- ложив, например, Аз —— -1, имеем Вз — — 4. Следовательно, частные решении, соответствующие корню Л, = — 1, будут аз = -е ', уэ —— 4е '. Далее, в силу того, что Л = 1 — двукратный корень, мы должны искать чаем!не решения, соответствующие этому корню, в виде: х = (а+ И)е', у = (с+ >(1)е > (2) где а, 6, с, >( — пока неизвестные постоянные. Для их определения подставим (2) в данную систему уравнений. После некоторых упрощений, приравнивая коэффициенты при одинаковых функциях, получаем систему уравнений: ба 4 76+ Зс 4 2>( = О, 2Ь+ >( = О, 8а + бЬ+ 4с+ т( = О, из которой находим >г = -2Ь, с = -2а — Ь, где а, Ь вЂ” произвольные постоянные. Таким образом, общее решение предсташшется следующим образом: х = (а+ И)е' — Сзе ', у = (-2а — Ь вЂ” 2И)е + 4Сзе ', а Применяя метод вариации, решить следующие системы: 2 3 430.

х = -4х — 2у+ —, у = ба+ Зу— е' — 1 е' — 1 М Прежде всего решаем однородную систему уравнений, соответствующую данной системе: х = -4х — 2у, у = бх+ Зу. Подставив значение у = -2х- 2 х во второе уравнение, получаем й+й = О, откуда х = С +С е 1.

А тогда у = -2С! — 2Сге '. Для определения общего решения неоднородной системы, согласно методу вариации произвольных постоянных, считаем С! и Сг некоторыми дифференцируемыми функциями. Зги функции мы найдем из системы уравнений, которая получается в результате подстановки значений х и у в неоднородную систему. Таким образом, мы имеем: 2 .

3 ., 3 С! + Сге = —, -2С! — — Сге е' - 1 2 е' — 1 Отсюда находим Сг = -э —, С, = О. Интегрируя последние уравнения, получаем 2е' е — 1' С! = С!о, Сг = 2)п!е' — Ц+ Сто> где См, См — произвольные постоянные. Наконец, подставляя значения С, и Сг в общее решение однородной системы, имеем общее решение данной системы; — Ст+ Сге '+2е '(п)е' — Ц, у = -2С! — — Сге — Зе 1п)е — Ц -! ! 2 где С„Сг — новые произвольные постоянные. м 193 () 1.

Лвиейвые свстемы 1 431. х = *- у — — 4 = 2» — у. сгп! < Легко найти (хотя бы методом исключения) общее решение соответствующей однородной системы х = С, в!и ! + С, сов(, у = (С, + Сг) яп(+ (Сг — С) сов!. (1) Считая (в согласии с методом вариации произвольных постоянных), что С, и Сг — некоторые дифференцируемые функции, и подставляя значения х и у нз (1) в данную систему, будем иметь 1 ... 1 С, сов( — Сг яп! =, Сз яп(+ Сг сов! = —, сов( сов! откуда находим с, = 1+ гй(, Сг = 1 — зйг. интегрируя эти уравнения, имеем С, =! — (в|сов!!4Сн, Сг=!+!п!сов!!+Сго. (2) Наконец, подставляя (2) в (1), получаем обзцее решение предложенной системы: х = Цйп!+ сов!) 4(сов! — япг)!в|сов!!+ С, яп(+ Сгсов(, у = 2(в!п!+ 2сов(+ !и |сов!!+ (Сз + Сг)яп(+ (С, — С )сов(, где С„С, — новые произвольные постоянные. м Решить следующие системы: 432. (х+ 2(х — у) = 1, !у+ х+ 5у = !'.

< Производя замену аргумента 1 по формуле т = 1п |!), ! Ф О, приходим к неоднородной системе с постоянными коэффициентами: Ах Ау г — + 2(х — у) = хе', — + х+ 5у = е '. з!т з(т Определив иэ второго уравнения системы г г(у »=е — 5у —— г(т козфф у= Ае +Ве . Подставляя у в неодноролное уравнение и приравнивая в полученном тождестве коэффициенты при одинаковых функциях слева и справа, будем иметь: А = 75, В = »20.

Таким образом, 2 у = Туев' х 2бе'. А тогда общее решение -м -и' 2 гз у=Сзе +Сге + — е х — е'. 15 20 Подстаюшя значение у в (*), получаем -м -з~ 7 и 3 х = -Сзе — 2Сге + — е ~ — е'. 3 10 Вернувшись к аргументу 1, имеем окончательно Сз 2Сг (г ЗЩ Сз Сг 2 г 1 х=- — — — + — ~ —, у= — + — + — !гх — !!(, !4 !!(з 15 10 (з Щз 15 20 1~0, м 433. Ву+ бх — у — 3» = О, (у+ 23х — бу — 9» ы О, Б+ х+ у — 2» = О. м Аналогично предыдущему примеру имеем: т = 1п !!!, ! ,-в О, и г(» г(у да — + бх — у — 3» = О, — + 23х — бу — 9» = О, — + х+ у — 2» = О. згт з!т з(т и подставив его в первое уравнение, получаем у 4 7у+ 12у = 4ег' ~ е'.

(1) Характеристическое уравнение Л' + 7Л+ 12 = 0 имеет корни Л, = -4, Лз — — — 3, поэтому общее решение однородного уравнения у+ 7у+ 12у = 0 запишется в виде у = С,е "+ С,е ". Частное решение у рассматриваемого неоднородного уравнения ищем, используя метод неопределенных ициентов, в таком виде: Гл.

3, Системы двффереициальвых уравнений 194 сЬ 434. — = ар(!) + рр(г), А! < Полагая * = о(!)У(!), и = ))(!)У(!), получаем оу + ау' = аур+ )уууЗ, )з у+ ))у' = — ур + у)ур. Пусть у' = У(с за О. Тогда система (2) примет вид; а =Дй, 1) = -ар, а, )) — неизвестные функции. Производя замену аргумента по формуле т = !' тз(!)Аз, систему (3) приводим к системе с постоянными коэффициентами: Аа А)У вЂ” =Д вЂ” = -а.

(5) Ат Ат Решив систему (5) и вернувшись к переменной Г согласно (4), а также приняв во внимание (1) и выбрав функцию у = ехр()' р(!) А!), окончательно имеем (2) (3) (4) Првмечавае. В примерах 432-434 мы пользовались заменой аргумента г = ( Г(!) Ш, катсрая прнмеюится а общем случае х системе уравнений вида Аэ — = у(1)Ая, Ф где А — псстсанная матрица. Указанная замена преобразует приведенную систему х системе уравнений с постоянными коэффициентами: йе — = Аз.

Ат 435. Е некоторой области пространства одновременно имеются однородные и стационарные электрическое и магнитное поля с векторами напряженности Е и Н, угол между которыми П олученную систему уравнений с постоянными коэффициентами будем решать методом Эйлера, положив я = Ае"', у = Ве"', з = Се"'. Тогда относительно постоянных А, В, С получим линейную сисюму А(6+ Л) —  — ЗС = О, 23А + В(Л вЂ” 6) — 9С = О, А+ В + С(Л вЂ” 2) = О, из которой в силу условий А и О, В ~ О, С ~ О следует„что определитель 6+Л -1 -3 23 Л вЂ” 6 -9 =О. 1 ! Л вЂ” 2 Легко найти корни этого уравнения; Л~ — — 2, Лз — — -1, Лз — — 1. Следовательно, обгдее решение системы (1) имеет внд; а = С~е '+ ЗСзе' — Сзе ', у = С~е '+ 2Сзе'+ Сзе ", з = С~е '+ 2Сзе'+ Сзе '.

Возвращаясь к переменной 1, общее решение данной системы записываем окончательно: з С 2Сз С а= С~! + Сз!!)+ —, и= -С~) + Сто+ —, з = ЗС~! + 2Сз!!!+ —, а (!! !!! ' !1! ' % 1. Лгщейвые системы 195 равен а. Частица с массой гп и зарядом е, имеющая начальную скорость го, попадает в это пространство.

Определить траекторию движения частицы. М На движугцугося в электромагнитном псле заряженную частицу действует сила Лоренца (=еЕ+е(г, Н), где г = (х, у, г) — радиус-вектор частицы. Поэтому, согласно второму закону Ньютона, имеем уравнение движения частицы: тг=еЕ+е(г Н! (1) Если векторы Е и Н расположить в плоскости хОУ и направить вектор Н вдоль оси Ох, то векторное уравнение (! ) можно представить в координатной форме: тй = еуН, ту = еЕяпа — ехН, тй = еЕсоьа, (2) где Е = !Е!, В = !Н!. Систему уравнений (2), третье из которой интегрируется независимо, решим методом исключения.

Тогда получим Е х = Аь!вы! -> Всоьогг+ — тяпа ь С, Н у = Асоьыг — Вяпог! + Р, еЕ г еН х = — ! соха+ ГФ+ Ег, 2т т' А, В, С, Р, Ег, Ег — произвояьные постоянные. Для их определения воспользуемся начальными условиями: х!г=о = У!г=о = х!г=о = О1 х!г=о = со*1 У!г=о = еоог х!г=о = "о*. Тогда на основании (3) получим: Е В-г-С=О, А+Р= О, Ег — — О, Аог+ — япа = со„, -Вог= го„, Е, = со,. Подставляя значения постоянных, найденных из (4), в (3), окончательно имеем; 1 у Е, Г, еоо Ег, еоо х = — ~еы — — япа) япы! — — соьог!+ — ь!па+ — ", и ) ог В х (4) У = — (со* — ыпа) соыот+ — ь)пег!+ ~ — ып а — ео„] —, и ! ог (,Н Ю еЕ х = — ! соьа+ ео,!. В 2т Интегрируя их, получаем еиг еыг х = — — япыг+ Аг(+ Аг, у = — — соки!+ В,г+ Вг, х = Сг!+ Сг.

Характеристики

Тип файла
DJVU-файл
Размер
3,39 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее