Антидемидович 4 - ТФКП (1113365), страница 5
Текст из файла (страница 5)
Кольцам называется множество Я, в ко~ором заданы две бинарные алгебраические операции: сложение и умножение, причем по сложению это множество — абелева группа (аддитианая группа кольца В), а умножение связано со сложением законами дистрибутивности: ч(аЕВ, ЬЕВ, сбВ) а(Ь+с)=аЬ+ас, (Ь+с)а=Ьа+са. Если операция умножения коммутативна, то кольцо называется коммутативнмм. Если В Э 1, то кольцо называется унитарным.
Например, множество О рациональных чисел вместе с операциями сложения и умножения образует унитарное кольцо. 2З. Тело. Если колыю, лишенное нейтрального элемента опюсительно операции сложения, образует группу относительно операции умножения, то оно называется телом. $2. Математические структуры 2.4. Поле. Тело, в котором операция умножения коммутативна, называется полем. Например, упорядоченные тройки (О, ч-, .), (В, +, ) являются соответственно полями рациональных и действительных чисел. Определение. Пусть 1К вЂ” тела (пале). Отобрагкение ! .
(: К ч и+, гдв и+ = (х б !)( ~ х ) О), называется абсолютным значением (модулем) в теле (пале) К, если У(а б К, !3 б К) выполннютсл следующие условия (акгиомы): 1) !о) = 0 ю а = 0; 2) !а ф =(а( ф(; 3) (а + д! ( (а~ е ф (нераввгктво треугольника). Тело (поле), в котором определено абсолютное значение, называется нормированным. 2.5. Векторное пространство няд полем К. 11ормированное пространство. Векториым (линейным) пространством над полем К называется упорядоченная тройка (Е, +,.), состоящая из множества Е, элементы которого называются векторами, операции сложения и операции умножения на элементы поля К.
Указанные операции должны иметь следующие свойства, называемые аксиомами векторного пространства: ч(х й Е, у е Е, г б Е, Л б '.К, и б К) 1) х -~- у = у + х; 2) (хту)ч-г =в+(у+г); 3) ЗО б Е: х -1- О = х) 4) 3(-х) б Е: х Ч- (-х) = 0; 5) Л(х+ у) = Лх+ Лу, (Л+ р)х = Лх+ рх; б) (Лр)х = Л(рх); 7)1 х=х. Имея в виду упрощение записей, вместо тройки (Е, -ь, .) пользуются векторным пространством Е. В произвольном векторном пространстве Е выполняются следующие свойства: 1) Л 0 = 0; 2) О х = 0; 3) ( — !)х = -х. Пусть Š— векторное пространство над нормированным полем !К. Отображение Ц Ц: Е Ж называется нормой (длиной) в пространстве Е, если ч(х б Е, у б Е, Л б К) выполняются условия (аксиомы): 1) ЦхЦ =Ою в=0; 2) ЦЛхЦ = (Л/ ЦхЦ; 3) Цх ь УЦ ~( ЦхЦ + ЦУЦ (неравенгтво треугольника). Значение нормы на векторе х б Е называется нормой этого вектора. Упорядоченный набор (Е, ч-, ч 1( 1() называется нормированным векторным пространствам.
С целью сокращения записи обычно пишут Е вместо набора (Е, +,, (~ Ц). Из аксиом 2), 3) сяедуег, что 1(оц = О, 1(хц > О ух й Е. Первое свойство получаем из аксиомы 2) при Л = О, второе — из аксиомы 3) при у = -х. Вектор х б Е называется пределом последовательности векторов (х„) нормированного пространства Е, если (1х„— хЦ = о(1). Запись: 1цп х„= х. Символом Ландау о(1) обозначают бесконечно малые числовые последовательности, т.
е. такие, что !(гп а„= О. Еще один символ Ландау 0(1) употребляют лля обозначения ограниченных числовых последовательностей. Теорема (о непрерывности нормы). Если последовательность (х„) векторов нормированного пространства Е сходится к вектору х, то Цх„(! ((хЦ. и Справедливость утверждения следует из неравенств -Цх„— еЦ й ((хчЦ вЂ” 1(хЦ 4((х„— х(( 'ч'п б я, являющихся следствием из неравенства треугольника. М В нормированном поле К модуль также является непрерывной функцией. Гл. !. Основные структуры математического анализа В векторном пространстве В каждое из отображений (( ((: В Н, где 12 л (Щ = ~~г хг (евклидава норма), =г (ф( = ~ ~1х,! (октаздрическая норма), (2) '=г 'ях(! = гпах (х,( (кубичгская норма), (3) гк К удовлетворяет аксиомам нормы. Последовательность (х„) векторов нормированного пространства Е называется фундаментальной, если (Уг > 0) (Эп, б )))) (У(п > п„р б Я)): ~~х„ьр — х„(( < г.
Нормированное пространство Е называется полным, если каждая фундаментальная последовательность (х„) его векторов имеет предел в Е. Каждое полное нормированное пространство называется банахавым. Теорема. Каждая сходящаяся послгдовательнасть (х„) векторов праизвальнага нармированнага пространства Е фундаментальна. м пусть г > 0 и х„- х.
Выберем такое и, е )г(, чтобы хгп > и, 1(х„— х~( < г. тогда У(п > п„р б К) имеем )(хяьр — хь(1 < )(х„ля — х(1-Ь (|х — х„(1 < г. М Нормированные пространства Н и 3("' являются полными. 5 3. Метрические пространства Метрические пространства являются одной из разновидностей топологических пространств. Впервые их выделил в 190б г. М. Фреше (1878 — 1973) в связи с изучением функциональных пространств. Одной из фундаментальных харакгеристик взаимного расположения точек множества является расстояние между ними. Внедрение метрики (расстояния) позволяет выразить в простой и доступной форме, на языке геометрии, результаты математического анализа. Наиболее важными понятиями в теории метрических пространств являются полнота, компактность и связность.
3.1. Аксиомы метрики. Предел последовательности точек метрического пространства. Определение 1. Пусть Х вЂ” произвольное множества. Отображение Х вЂ” г Ж называется г метрикой, если У(х б Х, у Е Х, г б Х) выполняются следующие условия (аксиомы): 1) р(х, у) = 0 ю х = у; 2) р(х, у) = р(у, х) (акгиама гиыиетрии); 3) р(х, у) < р(х, я) + р(я, у) (неравенгтво треугольника). Упорядоченггая пара (Х, р) называется метрическим пространством, а элементы множества Х называются точками метрического пространства. Каждое нормированное векторное пространство Е преврашается в метрическое, если в нем гу(х С Е, у б Е) метрику определить формулой р(х, у) = 1)х — у)1.
Проверка выполнения аксиом 1)-3) не представляет затруднений. Из аксиомы 3) по индукции следует, что У(х; Е Х, 7' = 1, и, и > 2) выполняется неравенство р(хг, х„) < р(хг, хз) + р(хг, хз)+, . + р(х„„х„). (2) Если р — расстояние в Х, то г((х Е Х, у б Х, я б Х) выполняется оценка (р(хг я) — р(у, я)( < р(х, у). (3) б 3. Метрические пространства 13 действительно, из аксиом 2) и 3) имеем р(х, г) < р(у, г) + р(х, у) и р(у, л) < <р(у, х) + Р(х, г) = р(х, у) + р(х, г), откуда -р(х, у) < р(х, з) — р(у, г) ~< р(х, у). Из неравенства (3) следует, что У(х Е Х, у Е Х) р(х, у) ) О. Пример 1.
Функция р(х, у) = )х — у) У(х, у) Е !))' есть расстояние в множестве К, а метрическое пространства (Й, р) называется действительной пряной Пример 2. Пусть (Н, -ь, ч )) . !)) — нормированное пространство (см, п.2.5), Отображение )(~ )й, где р(х, у) = !!х — у)), У(х, у) Е Ж~, удовлетворяет аксиомам метрики.
Пример 3. Пусть Х вЂ” произвольное множество, Š— множество о/раниченных отображений Х К. Тогда у(/ Е Е, д Е Е) имеем (1-д) Е Е и опрелелено число р(1, д) = зцр )1(х) -д(х)). / ох Отобрюкение (/, д) р(1, д) является расстоянием в множестве Е. Выполнение аксиом 1) — 3) очевилио. Определение 2. Пусть (Х, р) — метрическое пространство, х Е Х, х„Е Х т/и Е И. Точка х называется пределом последовательности (х„), если р(х„, х) = о(1).
В этом случае пишем х = 1цп х„. Т/оследовательаость точек метрического пространства, имеющая предел, иазыаается сходящейся. Теорема 1. Сходящаяся последовательность (х„) точек метрического простраистои (Х, р) имеет единстаеииый предел. щ Предположим, что !цп х„= хо, )пп х„= уа, ха ~ уа. Обозначим го = р(хо, уа), По определению предела существуют номера я~а~ Е И, п~„~ Е И а/и > а~а~ р(х„, ха) < -*о и Уп ) го!',~ р(х„, уа) < ыг. Тогда чп > и„= гпах(п!'„), п~,~) р(х„ха) е р(х„> уо) < га.
По неравенству треугольника р(ха уо) = го ~ (р(х„, хо) ч- р(х„, уа) < га, если только и > поы Получили противоречивое неравенство го > го, источник которого в предположении, что схоляшаяся последовательность имеет два предела, р Определение 3. Пагледоаатгльпость (х„) точек метрического прастрапстаа (Х, р) иизыаается фупдамеитальиай, если (Уг > О) (Лп, Е Я) (У(п ~ )п„Р Е РО): Р(х„ар, х„) < г. (4) Теорема 2.
Если последовательность (х„) точек метрического прострапстаи (Х, р) сходится, то она фупдимеитальиал. щ 11усть х = !цп х„, х Е Х. Тогда Чг > О Лп, Е И; Уп > и, р(х„, х) < -'. Следователыю, У(н ) п„р Е 1Ч) выполняется неравенство р(х„,р, х) < -' и из аксиом 2)„3) получаем оценку р(х„ор, х„) ( р(х„ор,х) -1- р(х, х„) = р(х„лр, х) + р(х„, х) < г.
М Определение 4. Метрическое прострапстоо (Х, р) называется полным, если каждая фупдаментальиал последовательность его точек сходится в ием. Действительная прямая (см. пример 1) является полным метрическим пространством. Пусть !/(х Е ~2~ у Е О) р(х, у) = )х — у). Метрическое пространство (О, р) не является 2 Х полным, поскольку фундаментальная последовательность рациональных чисел х„= 2+ т, +...
+ — „, сходится к иррациональному числу е Е О. 3.2. Шары, сферы, диаметр множества. В теории метрических пространств используется язык классической геометрии. Пусть (Х, р) — метрическое пространство, хо Е Х, 6 > О. Определение 1. Мноакестао Оо(ха) = (х Е Х ) р(хо, х) < 6) называется открыт ым тиарам радиуса 6 с центром в точке хо, а такхсе 6-окрестиостью точки хо. Определение 2.
Миоясестао Ол(ха) = (х Е Х ) р(ха, х) < 6) называется зам к пут ым шаром радиуса 6 с центром а тачке ха. Определение 3. Мпохсество д(хо, 6) = (х Е Х ) р(хо, х) = 6) называется сферой радиуса 6 с центрам а точке хо. На действительной прямой открьпый (соответственно замкнутый) шар радиуса 6 с центром в точке ха Е К есть интервал (хо — 6, хо+ 6) (соответственно сегмент )ао — 6, ха + 6)), а сфера того же ралиуса состоит из двух точек (х, — 6, ха + 6) .
Гл. 1. Основные структуры математического анализа 14 Определение 4. Пусть (Х, р) — метрическое пространство, А и  — два непустых подмножества множества Х. Неотрицательное чисго р(А, В) = !п( р(х, у) ЕА,уЕЛ назывигтся расстоянием от А да В. Если множество А одноточечное, то вместо р(А, В) записывают р(х, В).