Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045), страница 50

Файл №1113045 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 50 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045) страница 502019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 50)

 èòîãå âåùåñòâåííàÿ ñèììåòðè÷íàÿ ìàòðèöà A ïðèâîäèòñÿ ê êîíãðóýíòíîé äèàãîíàëüíîé ìàòðèöå Λ = P > AP ñ ïîìîùüþ âåùåñòâåííîéíåâûðîæäåííîé ìàòðèöû P .Ýòà èäåÿ âåäåò ê òàê íàçûâàåìîìó ìåòîäó Ëàãðàíæà. ×òîáû ïîíÿòü åãî ñóòü, ðàññìîòðèì êâàäðàòè÷íóþ ôîðìóf = a11 x21 + a22 x22 + a33 x23 + 2a12 x1 x2 + 2a13 x1 x3 + 2a23 x2 x3 .Åñëè a11 6= 0, òî ïîëíûé êâàäðàò âûäåëÿåòñÿ ñëåäóþùèì îáðàçîì:2 a13a212a213a12 a13a1222x2 +x3 + a22 −x2 + a33 −x3 + 2 a23 −x2 x3f = a11 x1 +a11a11a11a11a11= b11 y12 + b22 y22 + b33 y32 + 2b23 y2 y3 ,b11 = a11 ,b22 = a22 −a212,a11b33 = a33 −a12a13x2 +,a11a11Òàêèì îáðàçîì, A êîíãðóýíòíà ìàòðèöåb11 00B =  0 b22 b23  = P1> AP1 ,0 b23 b33y1 = x1 +a213,a11y2 = x 2 ,b23 = a23 −a12 a13,a11y3 = x 3 .1 a12 /a11 a13 /a1110 .P1 = 0001Å.

Å. Òûðòûøíèêîâ239Ñëåäóþùèé øàã î÷åâèäåí ñ ïîìîùüþ âûäåëåíèÿ ïîëíîãî êâàäðàòà èñêëþ÷èòü ïðîèçâåäåíèå y2 y3 .Ñ ïîìîùüþ ìåòîäà Ëàãðàíæà ìîæíî íàéòè èíåðöèþ ìàòðèöû A. Åñëè æå íóæíîïîëó÷èòü îðòîãîíàëüíóþ ìàòðèöó P , òî ñëåäóåò îáðàòèòüñÿ ê äðóãèì ìåòîäàì íàïðèìåð, ê ìåòîäó âðàùåíèé.Ìû íå áóäåì çäåñü çàíèìàòüñÿ ôîðìàëèçàöèåé ìåòîäà Ëàãðàíæà äëÿ ñèììåòðè÷íûõìàòðèö îáùåãî âèäà. Âìåñòî ýòîãî ìû ðàññìîòðèì ñëó÷àé âåùåñòâåííûõ ïîëîæèòåëüíîîïðåäåëåííûõ ìàòðèö è ìåòîä êâàäðàòíîãî êîðíÿ ñ ïîìîùüþ ïðåîáðàçîâàíèé òîãîæå òèïà îí ðåøàåò òó æå çàäà÷ó, ÷òî è ìåòîä Ëàãðàíæà.36.8Ìåòîä êâàäðàòíîãî êîðíÿÏóñòü äàíà ìàòðèöà A ïîðÿäêà n è Ak åå k ×k -ïîäìàòðèöà, ðàñïîëîæåííàÿ íà ïåðåñå÷åíèè ïåðâûõ k ñòðîê è ñòîëáöîâ.

Ïîäìàòðèöû A1 , . . . , An = A íàçûâàþòñÿ âåäóùèìèïîäìàòðèöàìè, à èõ îïðåäåëèòåëè âåäóùèìè ìèíîðàìè ìàòðèöû A.Äëÿ âåùåñòâåííîé ñèììåòðè÷íîé ìàòðèöû A, â êîòîðîé âñå âåäóùèå ìèíîðû ïîëîæèòåëüíû, èìååò ìåñòî ðàçëîæåíèå A = R> R, ãäå R âåùåñòâåííàÿ âåðõíÿÿ òðåóãîëüíàÿ ìàòðèöà ñ ïîëîæèòåëüíûìè äèàãîíàëüíûìè ýëåìåíòàìè. 2Ïðåäïîëîæèì, ÷òî ôàêò ñóùåñòâîâàíèÿ ðàçëîæåíèÿ óæå äîêàçàí. Òîãäà íåòðóäíîïîíÿòü, êàê åãî ìîæíî âû÷èñëèòü. Äëÿ ìàòðèöû ïîðÿäêà n = 3 èìååìa11 a12 a13r11r11 r12 r13a12 a22 a23  = r12 r22r22 r23  ⇒a13 a23 a33r13 r23 r33r33r11 =r22q2= a22 − r12,√a11 ,r23r12 = a12 /r11 ,r13 = a13 /r11 ,q22= (a23 − r13 r12 )/r22 , r33 = a33 − r13− r23.Âû÷èñëåíèÿ àíàëîãè÷íû è â ñëó÷àå ïðîèçâîëüíîãî n.

Ìåòîä íàçûâàåòñÿ ìåòîäîì êâàäðàòíîãî êîðíÿ.Èíòåðåñíî, ÷òî â äàííîì ñëó÷àå êàê áû íå èñïîëüçóåòñÿ èäåÿ èñêëþ÷åíèÿ ýëåìåíòîâ, íî èìåííî êàê áû: ÷òîáû îáúÿñíèòü, ïî÷åìó ìîæíî èçâëåêàòü êîðíè, ïðîùå âñåãîâåðíóòüñÿ ê èäåå ìåòîäà Ãàóññà.Òåîðåìà. Ïóñòü A ìàòðèöà ïîðÿäêà n, â êîòîðîé âñå âåäóùèå ìèíîðû îòëè÷íû îòíóëÿ. Òîãäà ñóùåñòâóþò åäèíñòâåííûå íèæíÿÿ òðåóãîëüíàÿ ìàòðèöà L ñ åäèíèöàìèíà äèàãîíàëè è âåðõíÿÿ òðåóãîëüíàÿ ìàòðèöà U òàêèå, ÷òî A = LU .Äîêàçàòåëüñòâî. Ïóñòü n = 3. Ïåðâûé øàã ìåòîäà Ãàóññà äàåò1 0 0 a11 a12 a13a11 a12 a13−l21 1 0 a21 a22 a23  =  0 b22 b23  ,−l31 0 1 a31 a32 a330 b32 b33l21 = a21 /a11 ,l31 = a31 /a11 .1 0 0a11 a12 a13a11 a12 a13⇒  a21 a22 a23  =  l21 1 0   0 b22 b23  ⇒ det A2 = a11 b22 ⇒ b22 6= 0.a31 a32 a33l31 0 10 b32 b332  âû÷èñëèòåëüíîé àëãåáðå ðàçëîæåíèå òàêîãî âèäà íàçûâàþòðàçëîæåíèåì Õîëåöêîãî.240Ëåêöèÿ 36Ïîñêîëüêó b22 6= 0, ìîæíî îáîéòèñü áåç ïåðåñòàíîâîê ñòðîê è ïåðåéòè êî âòîðîìó øàãóìåòîäà Ãàóññà:1 0 0a11 a12 a13a11 a12 a130 1 0  0 b22 b23  =  0 b22 b23  ,0 −l31 10 b32 b3300 c33l31 = b32 /b22 . èòîãå ïîëó÷àåìa11 a12 a131 0 0a11 a12 a13a21 a22 a23  = l21 1 0  0 b22 b23  .a31 a32 a33l31 l32 100 c33Çàìåòèì, ÷òî det A3 = a11 b22 c33 ⇒ c33 6= 0 (ýòî ãàðàíòèðóåò âîçìîæíîñòü ïðîâåäåíèÿòðåòüåãî øàãà ìåòîäà Ãàóññà áåç ïåðåñòàíîâîê ñòðîê â ñëó÷àå n > 3).

Åäèíñòâåííîñòüïîñòðîåííîãî LU -ðàçëîæåíèÿ ïðîâåðÿåòñÿ íåïîñðåäñòâåííî: ïåðâàÿ ñòðîêà â U è ïåðâûé ñòîëáåö â L îïðåäåëåíû îäíîçíà÷íî, îòñþäà òî æå ñàìîå ïîëó÷àåì äëÿ âòîðîéñòðîêè â U è âòîðîãî ñòîëáöà â L, è òàê äàëåå. Îáîáùåíèå äîêàçàòåëüñòâà íà ñëó÷àéïðîèçâîëüíîãî n íå ïðåäñòàâëÿåò íèêàêîé òðóäíîñòè. 2Ñëåäñòâèå.

Äëÿ ëþáîé âåùåñòâåííîé ñèììåòðè÷íîé ìàòðèöû, â êîòîðîé âñå âåäó-ùèå ìèíîðû ïîëîæèòåëüíû, ñóùåñòâóåò âåùåñòâåííàÿ âåðõíÿÿ òðåóãîëüíàÿ ìàòðèöà R òàêàÿ, ÷òî A = R> R. Ýëåìåíòû ãëàâíîé äèàãîíàëè R ìîãóò áûòü âûáðàíûïîëîæèòåëüíûìè, ïðè ýòîì îãðàíè÷åíèè R åäèíñòâåííà.Äîêàçàòåëüñòâî. Âîñïîëüçóåìñÿ ñóùåñòâîâàíèåì è åäèíñòâåííîñòüþ LU -ðàçëîæåíèÿA = LU , â êîòîðîì L èìååò åäèíèöû íà ãëàâíîé äèàãîíàëè. Ïóñòü D äèàãîíàëüíàÿ ìàòðèöà ñ ãëàâíîé äèàãîíàëüþ, âçÿòîé èç ìàòðèöû U = [uij ]. Ïîñêîëüêó det Ak =u11 . . . ukk äëÿ âñåõ k , íàõîäèì, ÷òî ukk > 0 äëÿ âñåõ k . ñèëó ñèììåòðè÷íîñòè ìàòðèöû A,A = A> = LU = (U > D−1 )(DL) ⇒ L = U > D−1 .Îòñþäà A = (D−1/2 U )> (D−1/2 U ).

Òàêèì îáðàçîì, R = D−1/2 U . Åäèíñòâåííîñòü ïðîâåðÿåòñÿ íåïîñðåäñòâåííî òàê æå, êàê â ñëó÷àå LU -ðàçëîæåíèÿ. 2Çàìå÷àíèå. Îïðåäåëèòåëü âåùåñòâåííîé ñèììåòðè÷íîé ïîëîæèòåëüíî îïðåäåëåííîéìàòðèöû ïîëîæèòåëåí (êàê ïðîèçâåäåíèå ïîëîæèòåëüíûõ ñîáñòâåííûõ çíà÷åíèé). Ëåãêî ïîêàçàòü, ÷òî ñâîéñòâî ïîëîæèòåëüíîé îïðåäåëåííîñòè íàñëåäóåòñÿ âñåìè âåäóùèìèïîäìàòðèöàìè ⇒ âñå åå âåäóùèå ìèíîðû ïîëîæèòåëüíû. Ïîýòîìó ìåòîä êâàäðàòíîãî êîðíÿ ìîæíî ïðèìåíÿòü äëÿ ëþáîé âåùåñòâåííîé ñèììåòðè÷íîé ïîëîæèòåëüíîîïðåäåëåííîé ìàòðèöû. Ìåòîä êâàäðàòíîãî êîðíÿ ëåãêî ïåðåíîñèòñÿ òàêæå íà ñëó÷àéêîìïëåêñíûõ ïîëîæèòåëüíî îïðåäåëåííûõ ìàòðèö (îíè îáÿçàòåëüíî ýðìèòîâû). Äëÿòàêèõ ìàòðèö âñåãäà èìååò ìåñòî ðàçëîæåíèå A = R∗ R, ãäå R êîìïëåêñíàÿ âåðõíÿÿòðåóãîëüíàÿ ìàòðèöà ñ ïîëîæèòåëüíûìè äèàãîíàëüíûìè ýëåìåíòàìè.Çàäà÷à.Äîêàçàòü, ÷òî äëÿ ëþáîé ïîëîæèòåëüíî îïðåäåëåííîé ìàòðèöûìåñòî íåðàâåíñòâîdet A ≤ a11 a22 . .

. ann .A = [aij ] ∈ Cn×nèìååòÅ. Å. Òûðòûøíèêîâ36.9241Êðèòåðèé ïîëîæèòåëüíîé îïðåäåëåííîñòèÄîêàæåì âàæíûé ðåçóëüòàò, èçâåñòíûé êàê êðèòåðèé Ñèëüâåñòðà.Òåîðåìà. Ïóñòü äàíà ýðìèòîâà ìàòðèöà. Äëÿ åå ïîëîæèòåëüíîé îïðåäåëåííîñòèíåîáõîäèìî è äîñòàòî÷íî, ÷òîáû âñå åå âåäóùèå ìèíîðû áûëè ïîëîæèòåëüíû.Äîêàçàòåëüñòâî. Íåîáõîäèìîñòü âûòåêàåò èç òîãî, ÷òî ñâîéñòâî ïîëîæèòåëüíîé (èíåîòðèöàòåëüíîé) îïðåäåëåííîñòè ýðìèòîâîé ìàòðèöû A ïîðÿäêà n íàñëåäóåòñÿ åå âåäóùèìè ïîäìàòðèöàìè A1 , . . . , An íóæíî ëèøü ó÷åñòü ðàâåíñòâî x1 x1x...k [x1 , ... , xk ] Ak ...

= [x1 , ..., xk , 0, ..., 0] A 0.xk...0Èç ïîëîæèòåëüíîé îïðåäåëåííîñòè ìàòðèöû Ak ñëåäóåò, ÷òî âñå åå ñîáñòâåííûå çíà÷åíèÿ ïîëîæèòåëüíû ⇒ det Ak > 0 (êàê ïðîèçâåäåíèå ïîëîæèòåëüíûõ ñîáñòâåííûõçíà÷åíèé). Äîñòàòî÷íîñòü ïîëó÷àåòñÿ èç ðàçëîæåíèÿ A = R∗ R, ãäå R âåðõíÿÿ òðåóãîëüíàÿ ìàòðèöà: äëÿ ëþáîãî x 6= 0 ïîëó÷àåì x∗ Ax = x∗ (R∗ R)x = (Rx)∗ (Rx) > 0.2Çàäà÷à.ÌàòðèöàA =A11A21A12A22ÿâëÿåòñÿ ýðìèòîâîé, à åå ïîäìàòðèöàîïðåäåëåííîé.

Äîêàçàòü, ÷òî ïîëîæèòåëüíàÿ îïðåäåëåííîñòü ìàòðèöûîïðåäåëåííîñòè ïîäìàòðèöûA22 .AA11 ïîëîæèòåëüíîðàâíîñèëüíà ïîëîæèòåëüíîé242Ëåêöèÿ 36Ëåêöèÿ 3737.1Ðàçäåëåíèå ñîáñòâåííûõ çíà÷åíèé ýðìèòîâîé ìàòðèöûÏóñòü ýðìèòîâà ìàòðèöà A ∈ Cn×n çàïèñàíà â áëî÷íîì âèäåB uA =, B ∈ C(n−1)×(n−1) , u ∈ Cn−1 .u∗ ann(1)ßñíî, ÷òî ïîäìàòðèöà B òîæå ýðìèòîâà. Ïóñòü µ1 ≥ . . . ≥ µn−1 åå ñîáñòâåííûå çíà÷åíèÿ, è ïóñòü Q óíèòàðíàÿ ìàòðèöà ïîðÿäêà n − 1, ïðèâîäÿùàÿ åå ê äèàãîíàëüíîìóâèäóµ1..Q∗ BQ =  ⇒. ∗Qµ  1 ...B uQ=∗1 u ann1µn−1s̄1 . .

. s̄n−1µn−1s1,sn−1 sns1 . . .  = Q∗ u,sn−1sn = s̄n = ann .Õàðàêòåðèñòè÷åñêèé ìíîãî÷ëåí ìàòðèöû A ëåãêî âû÷èñëÿåòñÿ:µ1 − λs1...det(A − λI) = µn−1 − λ sn−1 s̄1...s̄n−1sn − λn−1Y|s1 |2|sn−1 |2=(µi − λ) sn − λ −− ... −µ1 − λµn−1 − λi=1.Ñëåäîâàòåëüíî, åñëè ñîáñòâåííîå çíà÷åíèå λ ìàòðèöû A íå ñîâïàäàåò íè ñ îäíèì èçñîáñòâåííûõ çíà÷åíèé µ1 , .

. . , µn−1 åå ïîäìàòðèöû B , òî îíî óäîâëåòâîðÿåò óðàâíåíèþλ = F (λ) ≡|s1 |2|sn−1 |2+ ... ++ sn .λ − µ1λ − µn−1Óòâåðæäåíèå. Ïóñòü ýðìèòîâà ìàòðèöà A ïîðÿäêà n ñ ñîáñòâåííûìè çíà÷åíèÿìèλ1 ≥ . . . ≥ λn èìååò áëî÷íîå ðàçáèåíèå (1), â êîòîðîì B åå ýðìèòîâà ïîäìàòðèöàïîðÿäêà n − 1 ñ ñîáñòâåííûìè çíà÷åíèÿìè µ1 ≥ . . . ≥ µn−1 . Òîãäà åñëèµ1 > µ2 > . .

. > µn−1è si 6= 0, 1 ≤ i ≤ n − 1,243244Ëåêöèÿ 37òî èìåþò ìåñòî ñîîòíîøåíèÿ ðàçäåëåíèÿλ1 > µ1 > λ2 > µ2 > . . . > λn−1 > µn−1 > λn .(2)Äîêàçàòåëüñòâî. Ðàññìîòðèì ãðàôèê ôóíêöèè y = F (λ) (λ è y ïåðåìåííûå îñåéàáñöèññ è îðäèíàò). Î÷åâèäíî, F (λ) íå îïðåäåëåíî ïðè λ = µk . Ïîñêîëüêó F (λ) → ∞ïðè λ → µk , åñòåñòâåííî ãîâîðèòü, ÷òî F (λ) ïðè λ = µk îáðàùàåòñÿ â áåñêîíå÷íîñòü.Èçó÷èì ïîâåäåíèå ôóíêöèè F (λ) íà êàæäîì èç n èíòåðâàëîâIn = (−∞, µn−1 ), In−1 = (µn−1 , µn−2 ), . . . , I2 = (µ2 , µ1 ), I1 = (µ1 , +∞).Ïóñòü λ ∈ Ik , 2 ≤ k ≤ n − 1. Òîãäà|sk |2|sk−1 |2+→λ − µk λ − µk−1+∞ ïðè λ → µk ,−∞ ïðè λ → µk−1 ,à îñòàëüíûå ñëàãàåìûå â ïðåäñòàâëåíèè F (λ) ÿâëÿþòñÿ îãðàíè÷åííûìè. Ïîýòîìó+∞ ïðè λ → µk ,F (λ) →−∞ ïðè λ → µk−1 . ñèëó íåïðåðûâíîñòè F (λ), ïðÿìàÿ y = λ èìååò ïðè λ ∈ Ik òî÷êó ïåðåñå÷åíèÿ ñãðàôèêîì ôóíêöèè y = F (λ). Ñëó÷àè λ ∈ I1 è λ ∈ In ðàññìàòðèâàþòñÿ àíàëîãè÷íî.Òàêèì îáðàçîì, óðàâíåíèå F (λ) = λ èìååò n ðàçëè÷íûõ êîðíåé.

Характеристики

Тип файла
PDF-файл
Размер
1,67 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее