Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045), страница 52
Текст из файла (страница 52)
2Ëåêöèÿ 3838.1Ñîïðÿæåííûé îïåðàòîðÏóñòü A : V → W ïðîèçâîëüíûé îïåðàòîð, à V è W ïðîñòðàíñòâà ñî ñêàëÿðíûìè ïðîèçâåäåíèÿìè (· , ·)V è (· , ·)W . Ïîïðîáóåì ïîñòðîèòü îïåðàòîð A∗ : W → V ,îáëàäàþùèé ñâîéñòâîì(A(x), y)W = (x, A∗ (y))V∀ x ∈ V, ∀ y ∈ W.(∗)Óòâåðæäåíèå. Åñëè îïåðàòîð A∗ ñóùåñòâóåò, òî îí ÿâëÿåòñÿ ëèíåéíûì è åäèíñò-âåí.Äîêàçàòåëüñòâî. (A∗ (αu + βv), x)W = (αu + βv, A(x))V = α(u, A(x))V + β(v, A(x))V =α(A∗ (u), x)W + β(A∗ (v), x)W = (αA∗ (u) + βA∗ (v), x)W .Ïîëîæèì z = A∗ (αu + βv) − αA∗ (u) − βA∗ (v). Ìû äîêàçàëè, ÷òî (z, x)V = 0 ∀ x ∈ V .Ýòî âåðíî, â ÷àñòíîñòè, äëÿ x = z ⇒ (z, z)V = 0 ⇒ z = 0.Äîêàæåì åäèíñòâåííîñòü. Ïðåäïîëîæèì, ÷òî äëÿ íåêîòîðîãî y ∈ W èìååì(A(x), y)W = (x, z1 )V = (x, z2 )V ∀ x ∈ V . Òîãäà, âçÿâ x = z1 − z2 , íàõîäèì (x, x)V = 0⇒ z1 = z2 .
2Ñëåäñòâèå. Åñëè îïåðàòîðû A : V → W è A∗ : W → V ñâÿçàíû ñîîòíîøåíèåì (∗),òî îíè îáà ÿâëÿþòñÿ ëèíåéíûìè.Òèïè÷íàÿ ñèòóàöèÿ, â êîòîðîé ñîïðÿæåííûé îïåðàòîð î÷åíü ïîëåçåí, òàêàÿ. Ïðåäïîëîæèì, èìååòñÿ îïåðàòîðíîå óðàâíåíèå A(u) = f ñ îáðàòèìûì îïåðàòîðîì A è ïðèýòîì äëÿ ðàçëè÷íûõ ïðàâûõ ÷àñòåé f òðåáóåòñÿ âû÷èñëèòü çíà÷åíèå ëèíåéíîãî ôóíêöèîíàëàΦ(u) = (u, φ)V ,çàäàííîãî îäíèì è òåì æå âåêòîðîì φ.Îïðåäåëåíèå ñîïðÿæåííîãî îïåðàòîðà (A(u), z)W = (u, A∗ (z)) ïðèâîäèò ê ñëåäóþùåé èäåå: âìåñòî òîãî ÷òîáû ìíîãîêðàòíî ðåøàòü óðàâíåíèå A(u) = f äëÿ ðàçëè÷íûõf , ðàññìîòðåòü ñîïðÿæåííîå óðàâíåíèå A∗ (z) = φ, íàéòè åãî ðåøåíèå z , à çàòåì èñïîëüçîâàòü ôîðìóëóΦ(u) = (f, z)W .Çàìå÷àòåëüíî, ÷òî Φ(u) ìîæíî íàéòè, íå âû÷èñëÿÿ u.1Òåîðåìà. Ïóñòü A : V → W ëèíåéíûé îïåðàòîð.
Åñëè ïðîñòðàíñòâà V è W êîíå÷-íîìåðíû, òî îïåðàòîð A∗ , óäîâëåòâîðÿþùèé ðàâåíñòâó (∗), ñóùåñòâóåò è åäèíñòâåí.1 Ãëóáîêîå èçó÷åíèå ñîïðÿæåííûõ óðàâíåíèé, âî ìíîãîì íàâåÿííîå äàííîé îáùåé èäååé, âûïîëíèëàêàäåìèê Ãóðèé Èâàíîâè÷ Ìàð÷óê ïîñëåäíèé ïðåçèäåíò Àêàäåìèè íàóê ÑÑÑÐ.249250Ëåêöèÿ 38Ïðè ýòîì â ïàðå îðòîíîðìèðîâàííûõ áàçèñîâ ñîïðÿæåííîìó îïåðàòîðó ñîîòâåòñòâóåò ñîïðÿæåííàÿ ìàòðèöà.Äîêàçàòåëüñòâî.
Ïóñòü v1 , . . . , vn îðòîíîðìèðîâàííûé áàçèñ â V , à w1 , . . . , wm îðòîíîðìèðîâàííûé áàçèñ â W . Îáîçíà÷èì ÷åðåç A = [aij ] ∈ Cm×n ìàòðèöó îïåðàòîðàA â äàííîé ïàðå áàçèñîâ.  ñèëó îðòîíîðìèðîâàííîñòè,aij = (Avj , wi ),1 ≤ i ≤ m, 1 ≤ j ≤ n.×òîáû îïðåäåëèòü îïåðàòîð A∗ , ðàññìîòðèì ðàçëîæåíèå A∗ wi = α1 v1 + . . . + αn vn .Óìíîæàÿ ñêàëÿðíî íà vj , íàõîäèì αj = (A∗ wi , vj ) = (wi , Avj ), 1 ≤ j ≤ n. Òàêèìîáðàçîì, ìàòðèöà B = [bji ] ëèíåéíîãî îïåðàòîðà A∗ â ïàðå áàçèñîâ {wi } è {vj } äîëæíàèìåòü ýëåìåíòûbji = (wi , Avj ) = (Avj , wi ) = āij ⇒ B = A∗ .ßñíî òàêæå, ÷òî ìû ïîëó÷èëè åäèíñòâåííîñòü îïåðàòîðà A∗ .
Ñóùåñòâîâàíèå äîêàçûâàåòñÿ òàê: ðàññìîòðèì îïåðàòîð, çàäàííûé ìàòðèöåé A∗ , è ïðîâåðèì, ÷òî äëÿ íåãîâûïîëíÿåòñÿ ðàâåíñòâî (∗):x=nXj=1xj vj ,y=mXyi wi ⇒ (Ax, y)W =i=1n XmXaij xj ȳi = (x, A∗ y)V ,j=1 i=1÷òî è òðåáîâàëîñü äîêàçàòü. 238.2Ìàòðèöà ñîïðÿæåííîãî îïåðàòîðàÏóñòü V = Cn è W = Cm . Êàê ìû çíàåì, ïðîèçâîëüíûå ñêàëÿðíûå ïðîèçâåäåíèÿ â Cnè Cm èìåþò âèä(p, q)V = q ∗ Sp, (y, z)W = z ∗ T y,ãäå S ∈ Cn×n è T ∈ Cm×m ýðìèòîâû ïîëîæèòåëüíî îïðåäåëåííûå ìàòðèöû.Ïóñòü ëèíåéíûé îïåðàòîð A : Cn → Cm îïðåäåëÿåòñÿ óìíîæåíèåì íà ìàòðèöóA ∈ Cm×n , à ñîïðÿæåííûé îïåðàòîð óìíîæåíèåì íà ìàòðèöó B ∈ Cn×m .
Òîãäà äëÿëþáûõ x ∈ Cn è y ∈ Cm äîëæíî áûòüy ∗ T (Ax) = (By)∗ Sx ⇒ y ∗ (T A)x = y ∗ (B ∗ S)x ⇒ T A = B ∗ S ⇒ B = S −1 A∗ T.Ðàçíûå ñêàëÿðíûå ïðîèçâåäåíèÿ â Cn è Cm ïðèâîäÿò, êîíå÷íî, ê ðàçíûì ñîïðÿæåííûì îïåðàòîðàì íî, êàê âèäèì, ëþáîé èç íèõ åñòü óìíîæåíèå íà ìàòðèöó âèäàS −1 A∗ T , ãäå S è T ýðìèòîâû ïîëîæèòåëüíî îïðåäåëåííûå ìàòðèöû, çàäàþùèå ñêàëÿðíûå ïðîèçâåäåíèÿ.Ïóñòü A ìàòðèöà ëèíåéíîãî îïåðàòîðà A : V → W , dim V = n, dim W = m, âêàêîé-òî ïàðå áàçèñîâ. Åñëè x è y âåêòîð-ñòîëáöû èç êîîðäèíàò ðàçëîæåíèÿ ïðîîáðàçàè îáðàçà ïðè äåéñòâèè A, òî ïîëó÷àåì y = Ax. Ïóñòü òåïåðü x = By . Òîãäà Sx =A∗ T y ⇒ çàìåíà xe = Sx, ye = T y ïðèâîäèò ê ñîîòíîøåíèþ xe = A∗ ye ⇒ â ïàðåáàçèñîâ, îïðåäåëåííûõ ñòîëáöàìè ìàòðèö T −1 è S −1 , ìàòðèöà îïåðàòîðà A∗ èìååòâèä A∗ .
Ëåãêî âèäåòü, ÷òî ýòî áàçèñû, áèîðòîãîíàëüíûå (â ñêàëÿðíûõ ïðîèçâåäåíèÿõïðîñòðàíñòâ W è V , ñîîòâåòñòâåííî) äëÿ áàçèñîâ, â êîòîðûõ ïîëó÷åíà ìàòðèöà A (ñì.ðàçäåë 25.7).Å. Å. Òûðòûøíèêîâ38.3251Íîðìàëüíûé îïåðàòîðÏóñòü A : V → V ëèíåéíûé îïåðàòîð, V ïðîñòðàíñòâî ñî ñêàëÿðíûì ïðîèçâåäåíèåì (· , ·)V . Åñëè AA∗ = A∗ A, òî A íàçûâàåòñÿ íîðìàëüíûì îïåðàòîðîì. Äàííîåñâîéñòâî çàâèñèò îò ñêàëÿðíîãî ïðîèçâåäåíèÿ: â äðóãîì ñêàëÿðíîì ïðîèçâåäåíèè Aìîæåò íå áûòü íîðìàëüíûì.Çàäà÷à.ïðîñòðàíñòâåAÏóñòüV.A : V → V ëèíåéíûé îïåðàòîð â ïðîèçâîëüíîì êîíå÷íîìåðíîì óíèòàðíîìÄîêàæèòå, ÷òî ñóùåñòâóåò îðòîíîðìèðîâàííûé áàçèñ, â êîòîðîì ìàòðèöà îïåðàòîðàÿâëÿåòñÿ âåðõíåé òðåóãîëüíîé.Èçó÷åíèå íîðìàëüíûõ îïåðàòîðîâ ëåãêî ñâîäèòñÿ ê èçó÷åíèþ íîðìàëüíûõ ìàòðèö:äîñòàòî÷íî âûáðàòü â V îðòîíîðìèðîâàííûé áàçèñ, òîãäà íîðìàëüíîñòü îïåðàòîðà ðàâíîñèëüíà íîðìàëüíîñòè åãî ìàòðèöû â äàííîì áàçèñå.
Îòñþäà ÿñíî, ÷òî íîðìàëüíûéîïåðàòîð ÿâëÿåòñÿ îïåðàòîðîì ïðîñòîé ñòðóêòóðû. Çàìåòèì òàêæå,÷òî ëþáîé îïåðàòîðïðîñòîé ñòðóêòóðû ìîæíî ñäåëàòü íîðìàëüíûì çà ñ÷åò âûáîðà ñêàëÿðíîãî ïðîèçâåäåíèÿ (äîêàæèòå!).Âàæíåéøèå êëàññû íîðìàëüíûõ îïåðàòîðîâ: óíèòàðíûå îïåðàòîðû (A∗ = A−1 ) èýðìèòîâû (ñàìîñîïðÿæåííûå) îïåðàòîðû (A∗ = A). Ïóñòü A íîðìàëüíûé îïåðàòîð.Ëåãêî äîêàçûâàåòñÿ, ÷òî óíèòàðíîñòü îïåðàòîðà A ðàâíîñèëüíà òîìó, ÷òî âñå åãîñîáñòâåííûå çíà÷åíèÿ ïî ìîäóëþ ðàâíû 1, à ýðìèòîâîñòü ðàâíîñèëüíà âåùåñòâåííîñòè ñîáñòâåííûõ çíà÷åíèé. Ïîä÷åðêíåì, ÷òî óíèòàðíîñòü è ýðìèòîâîñòü îïåðàòîðàçàâèñÿò îò ñêàëÿðíîãî ïðîèçâåäåíèÿ.38.4Ñàìîñîïðÿæåííûé îïåðàòîðÅñëè (Ax, y)V = (x, Ay)V ∀ x, y ∈ V , òî, â ñèëó åäèíñòâåííîñòè ñîïðÿæåííîãî îïåðàòîðà, A∗ = A.  òàêèõ ñëó÷àÿõ A íàçûâàåòñÿ ñàìîñîïðÿæåííûì îïåðàòîðîì.
Åñëè(Ax, x) > 0 ïðè âñåõ x ∈ V, x 6= 0, òî îïåðàòîð íàçûâàåòñÿ ïîëîæèòåëüíî îïðåäåëåííûì.Åñëè V = Cn è ñêàëÿðíîå ïðîèçâåäåíèå (x, y)S = y ∗ Sx îïðåäåëÿåòñÿ ñ ïîìîùüþýðìèòîâîé ïîëîæèòåëüíî îïðåäåëåííîé ìàòðèöû S ∈ Cn×n , òî, ñîãëàñíî ïðåäûäóùåìóðàçäåëó, ñàìîñîïðÿæåííîñòü îïåðàòîðà óìíîæåíèÿ íà ìàòðèöó A ∈ Cn×n îçíà÷àåò, ÷òîA = S −1 A∗ S.(∗)Çàìåòèì, ÷òî ðàâåíñòâî S −1/2 S S −1/2 = I îçíà÷àåò, ÷òî ñòîëáöû ìàòðèöû S −1/2 îáðàçóþò îðòîíîðìèðîâàííûé áàçèñ îòíîñèòåëüíî ñêàëÿðíîãî ïðîèçâåäåíèÿ (· ·)S . ÌàòðèöàB îïåðàòîðà óìíîæåíèÿ íà A â äàííîì áàçèñå îïðåäåëÿåòñÿ ðàâåíñòâîìAS −1/2 = S −1/2 B ⇒ B = S 1/2 AS −1/2 .Ñàìîñîïðÿæåííîñòü îçíà÷àåò, ÷òî B äîëæíà áûòü ýðìèòîâîé ìàòðèöåé ýòî ëåãêî òàêæå âûâåñòè íåïîñðåäñòâåííî èç (∗). Êàê âèäèì, ìàòðèöà A ïîäîáíà ýðìèòîâîéìàòðèöå B ⇒ âñå åå ñîáñòâåííûå çíà÷åíèÿ âåùåñòâåííû.25238.5Ëåêöèÿ 38Ìèíèìèçàöèÿ íà ïîäïðîñòðàíñòâàõÎáñóäèì âàæíóþ èäåþ, ïîçâîëÿþùóþ ñòðîèòü ìåòîäû ðåøåíèÿ ñèñòåìû Ax = b, ñîâñåìíå ïîõîæèå íà èçâåñòíûé íàì ìåòîä Ãàóññà. Ïóñòü A ∈ Cn×n íåâûðîæäåííàÿ ìàòðèöà.Ðàññìîòðèì òàê íàçûâàåìûå ïîäïðîñòðàíñòâà ÊðûëîâàLk = L(b, Ab, .
. . , Ak−1 b),2k = 1, 2, . . . ,è îïðåäåëèì xk ∈ Lk èç ñëåäóþùåãî óñëîâèÿ:||b − Axk ||2 = min ||b − Az||2 .z∈LkÂåêòîð r(z) = b − Az íàçûâàåòñÿ íåâÿçêîé âåêòîðà z . Î÷åâèäíî, âû÷èñëåíèå âåêòîðà xkñâîäèòñÿ ê çàäà÷å î ïåðïåíäèêóëÿðå, îïóùåííîì èç âåêòîðà b íà ïîäïðîñòðàíñòâîMk = ALk = {y ∈ Cn : y = Az, z ∈ Lk }.Êàê ðåøàòü òàêóþ çàäà÷ó ìû óæå çíàåì. Ïîíÿòíî òàêæå, ÷òî ðåøåíèå ñóùåñòâåííî îáëåã÷àåòñÿ íàëè÷èåì óäîáíîãî áàçèñà p1 , .
. . , pk â Lk (íàïðèìåð, ïðèâîäÿùåãî êîðòîãîíàëüíîé ñèñòåìå Ap1 , . . . , Apk ). óñëîâèÿõ òî÷íûõ âû÷èñëåíèé ïðîöåññ âñåãäà çàâåðøàåòñÿ ïîëó÷åíèåì ðåøåíèÿ x.Åñëè Ln = Cn , òî, î÷åâèäíî, xn = x. Åñëè íà êàêîì-òî øàãå Lk = Lk+1 , òîALk ⊂ Lk+1 = Lk ⇒ ALk = Lk(â ñèëó íåâûðîæäåííîñòè ìàòðèöû A).Ïîñêîëüêó b ∈ Lk , òî äîëæíî áûòü Az = b äëÿ êàêîãî-òî z ∈ Lk . Íåâûðîæäåííîñòü Aîçíà÷àåò, ÷òî z = x ⇒ x ∈ Lk ⇒ xk = x.
Çàìåòèì òàêæå, ÷òî åñëè x ∈ Lk (à çíà÷èò,xk = x), òî Lk = Lk+1 (äîêàæèòå!).Îáðàòèì âíèìàíèå íà òî, ÷òî xk ÷àñòî îêàçûâàåòñÿ õîðîøèì ïðèáëèæåíèåì ê ðåøåíèþ x ïðè k n. Îïèñàííàÿ èäåÿ ÿâëÿåòñÿ êëþ÷åâîé â ñîâðåìåííûõ ìåòîäàõ ðåøåíèÿñèñòåì â ìíîãî÷èñëåííûõ ïðèêëàäíûõ çàäà÷àõ.38.6Ìåòîä ñîïðÿæåííûõ ãðàäèåíòîâÄàííàÿ èäåÿ ïðèîáðåòàåò îñîáåííî ýëåãàíòíóþ ôîðìó â ñëó÷àå, êîãäà A ýðìèòîâàïîëîæèòåëüíî îïðåäåëåííàÿ ìàòðèöà.Ïóñòü x0 ïðîèçâîëüíûé íà÷àëüíûé âåêòîð.
Åñëè r0 = b − Ax0 = 0, òî ðåøåíèåíàéäåíî. Åñëè r0 6= 0, íà÷èíàåì ñòðîèòü ïîäïðîñòðàíñòâà ÊðûëîâàLk = L(r0 , Ar0 , . . . , Ak−1 r0 ) = L(p1 , . . . , pk ),ïîñëåäîâàòåëüíî ïîëó÷àÿ â íèõ áàçèñ p1 , . . . , pk ñî ñëåäóþùèì ñâîéñòâîì:(Api , pj ) = 0,2 Çàìåòèì, ÷òîäåííîãî âåêòîðîìb, Ab, . . . , Ak−1 bi 6= j;p 1 = r0 .Lk åñòü ïîäïðîñòðàíñòâî ìèíèìàëüíîãî èíâàðèàíòíîãî ïîäïðîñòðàíñòâà, ïîðîæb.