Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045), страница 52

Файл №1113045 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 52 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045) страница 522019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 52)

2Ëåêöèÿ 3838.1Ñîïðÿæåííûé îïåðàòîðÏóñòü A : V → W ïðîèçâîëüíûé îïåðàòîð, à V è W ïðîñòðàíñòâà ñî ñêàëÿðíûìè ïðîèçâåäåíèÿìè (· , ·)V è (· , ·)W . Ïîïðîáóåì ïîñòðîèòü îïåðàòîð A∗ : W → V ,îáëàäàþùèé ñâîéñòâîì(A(x), y)W = (x, A∗ (y))V∀ x ∈ V, ∀ y ∈ W.(∗)Óòâåðæäåíèå. Åñëè îïåðàòîð A∗ ñóùåñòâóåò, òî îí ÿâëÿåòñÿ ëèíåéíûì è åäèíñò-âåí.Äîêàçàòåëüñòâî. (A∗ (αu + βv), x)W = (αu + βv, A(x))V = α(u, A(x))V + β(v, A(x))V =α(A∗ (u), x)W + β(A∗ (v), x)W = (αA∗ (u) + βA∗ (v), x)W .Ïîëîæèì z = A∗ (αu + βv) − αA∗ (u) − βA∗ (v). Ìû äîêàçàëè, ÷òî (z, x)V = 0 ∀ x ∈ V .Ýòî âåðíî, â ÷àñòíîñòè, äëÿ x = z ⇒ (z, z)V = 0 ⇒ z = 0.Äîêàæåì åäèíñòâåííîñòü. Ïðåäïîëîæèì, ÷òî äëÿ íåêîòîðîãî y ∈ W èìååì(A(x), y)W = (x, z1 )V = (x, z2 )V ∀ x ∈ V . Òîãäà, âçÿâ x = z1 − z2 , íàõîäèì (x, x)V = 0⇒ z1 = z2 .

2Ñëåäñòâèå. Åñëè îïåðàòîðû A : V → W è A∗ : W → V ñâÿçàíû ñîîòíîøåíèåì (∗),òî îíè îáà ÿâëÿþòñÿ ëèíåéíûìè.Òèïè÷íàÿ ñèòóàöèÿ, â êîòîðîé ñîïðÿæåííûé îïåðàòîð î÷åíü ïîëåçåí, òàêàÿ. Ïðåäïîëîæèì, èìååòñÿ îïåðàòîðíîå óðàâíåíèå A(u) = f ñ îáðàòèìûì îïåðàòîðîì A è ïðèýòîì äëÿ ðàçëè÷íûõ ïðàâûõ ÷àñòåé f òðåáóåòñÿ âû÷èñëèòü çíà÷åíèå ëèíåéíîãî ôóíêöèîíàëàΦ(u) = (u, φ)V ,çàäàííîãî îäíèì è òåì æå âåêòîðîì φ.Îïðåäåëåíèå ñîïðÿæåííîãî îïåðàòîðà (A(u), z)W = (u, A∗ (z)) ïðèâîäèò ê ñëåäóþùåé èäåå: âìåñòî òîãî ÷òîáû ìíîãîêðàòíî ðåøàòü óðàâíåíèå A(u) = f äëÿ ðàçëè÷íûõf , ðàññìîòðåòü ñîïðÿæåííîå óðàâíåíèå A∗ (z) = φ, íàéòè åãî ðåøåíèå z , à çàòåì èñïîëüçîâàòü ôîðìóëóΦ(u) = (f, z)W .Çàìå÷àòåëüíî, ÷òî Φ(u) ìîæíî íàéòè, íå âû÷èñëÿÿ u.1Òåîðåìà. Ïóñòü A : V → W ëèíåéíûé îïåðàòîð.

Åñëè ïðîñòðàíñòâà V è W êîíå÷-íîìåðíû, òî îïåðàòîð A∗ , óäîâëåòâîðÿþùèé ðàâåíñòâó (∗), ñóùåñòâóåò è åäèíñòâåí.1 Ãëóáîêîå èçó÷åíèå ñîïðÿæåííûõ óðàâíåíèé, âî ìíîãîì íàâåÿííîå äàííîé îáùåé èäååé, âûïîëíèëàêàäåìèê Ãóðèé Èâàíîâè÷ Ìàð÷óê ïîñëåäíèé ïðåçèäåíò Àêàäåìèè íàóê ÑÑÑÐ.249250Ëåêöèÿ 38Ïðè ýòîì â ïàðå îðòîíîðìèðîâàííûõ áàçèñîâ ñîïðÿæåííîìó îïåðàòîðó ñîîòâåòñòâóåò ñîïðÿæåííàÿ ìàòðèöà.Äîêàçàòåëüñòâî.

Ïóñòü v1 , . . . , vn îðòîíîðìèðîâàííûé áàçèñ â V , à w1 , . . . , wm îðòîíîðìèðîâàííûé áàçèñ â W . Îáîçíà÷èì ÷åðåç A = [aij ] ∈ Cm×n ìàòðèöó îïåðàòîðàA â äàííîé ïàðå áàçèñîâ.  ñèëó îðòîíîðìèðîâàííîñòè,aij = (Avj , wi ),1 ≤ i ≤ m, 1 ≤ j ≤ n.×òîáû îïðåäåëèòü îïåðàòîð A∗ , ðàññìîòðèì ðàçëîæåíèå A∗ wi = α1 v1 + . . . + αn vn .Óìíîæàÿ ñêàëÿðíî íà vj , íàõîäèì αj = (A∗ wi , vj ) = (wi , Avj ), 1 ≤ j ≤ n. Òàêèìîáðàçîì, ìàòðèöà B = [bji ] ëèíåéíîãî îïåðàòîðà A∗ â ïàðå áàçèñîâ {wi } è {vj } äîëæíàèìåòü ýëåìåíòûbji = (wi , Avj ) = (Avj , wi ) = āij ⇒ B = A∗ .ßñíî òàêæå, ÷òî ìû ïîëó÷èëè åäèíñòâåííîñòü îïåðàòîðà A∗ .

Ñóùåñòâîâàíèå äîêàçûâàåòñÿ òàê: ðàññìîòðèì îïåðàòîð, çàäàííûé ìàòðèöåé A∗ , è ïðîâåðèì, ÷òî äëÿ íåãîâûïîëíÿåòñÿ ðàâåíñòâî (∗):x=nXj=1xj vj ,y=mXyi wi ⇒ (Ax, y)W =i=1n XmXaij xj ȳi = (x, A∗ y)V ,j=1 i=1÷òî è òðåáîâàëîñü äîêàçàòü. 238.2Ìàòðèöà ñîïðÿæåííîãî îïåðàòîðàÏóñòü V = Cn è W = Cm . Êàê ìû çíàåì, ïðîèçâîëüíûå ñêàëÿðíûå ïðîèçâåäåíèÿ â Cnè Cm èìåþò âèä(p, q)V = q ∗ Sp, (y, z)W = z ∗ T y,ãäå S ∈ Cn×n è T ∈ Cm×m ýðìèòîâû ïîëîæèòåëüíî îïðåäåëåííûå ìàòðèöû.Ïóñòü ëèíåéíûé îïåðàòîð A : Cn → Cm îïðåäåëÿåòñÿ óìíîæåíèåì íà ìàòðèöóA ∈ Cm×n , à ñîïðÿæåííûé îïåðàòîð óìíîæåíèåì íà ìàòðèöó B ∈ Cn×m .

Òîãäà äëÿëþáûõ x ∈ Cn è y ∈ Cm äîëæíî áûòüy ∗ T (Ax) = (By)∗ Sx ⇒ y ∗ (T A)x = y ∗ (B ∗ S)x ⇒ T A = B ∗ S ⇒ B = S −1 A∗ T.Ðàçíûå ñêàëÿðíûå ïðîèçâåäåíèÿ â Cn è Cm ïðèâîäÿò, êîíå÷íî, ê ðàçíûì ñîïðÿæåííûì îïåðàòîðàì íî, êàê âèäèì, ëþáîé èç íèõ åñòü óìíîæåíèå íà ìàòðèöó âèäàS −1 A∗ T , ãäå S è T ýðìèòîâû ïîëîæèòåëüíî îïðåäåëåííûå ìàòðèöû, çàäàþùèå ñêàëÿðíûå ïðîèçâåäåíèÿ.Ïóñòü A ìàòðèöà ëèíåéíîãî îïåðàòîðà A : V → W , dim V = n, dim W = m, âêàêîé-òî ïàðå áàçèñîâ. Åñëè x è y âåêòîð-ñòîëáöû èç êîîðäèíàò ðàçëîæåíèÿ ïðîîáðàçàè îáðàçà ïðè äåéñòâèè A, òî ïîëó÷àåì y = Ax. Ïóñòü òåïåðü x = By . Òîãäà Sx =A∗ T y ⇒ çàìåíà xe = Sx, ye = T y ïðèâîäèò ê ñîîòíîøåíèþ xe = A∗ ye ⇒ â ïàðåáàçèñîâ, îïðåäåëåííûõ ñòîëáöàìè ìàòðèö T −1 è S −1 , ìàòðèöà îïåðàòîðà A∗ èìååòâèä A∗ .

Ëåãêî âèäåòü, ÷òî ýòî áàçèñû, áèîðòîãîíàëüíûå (â ñêàëÿðíûõ ïðîèçâåäåíèÿõïðîñòðàíñòâ W è V , ñîîòâåòñòâåííî) äëÿ áàçèñîâ, â êîòîðûõ ïîëó÷åíà ìàòðèöà A (ñì.ðàçäåë 25.7).Å. Å. Òûðòûøíèêîâ38.3251Íîðìàëüíûé îïåðàòîðÏóñòü A : V → V ëèíåéíûé îïåðàòîð, V ïðîñòðàíñòâî ñî ñêàëÿðíûì ïðîèçâåäåíèåì (· , ·)V . Åñëè AA∗ = A∗ A, òî A íàçûâàåòñÿ íîðìàëüíûì îïåðàòîðîì. Äàííîåñâîéñòâî çàâèñèò îò ñêàëÿðíîãî ïðîèçâåäåíèÿ: â äðóãîì ñêàëÿðíîì ïðîèçâåäåíèè Aìîæåò íå áûòü íîðìàëüíûì.Çàäà÷à.ïðîñòðàíñòâåAÏóñòüV.A : V → V ëèíåéíûé îïåðàòîð â ïðîèçâîëüíîì êîíå÷íîìåðíîì óíèòàðíîìÄîêàæèòå, ÷òî ñóùåñòâóåò îðòîíîðìèðîâàííûé áàçèñ, â êîòîðîì ìàòðèöà îïåðàòîðàÿâëÿåòñÿ âåðõíåé òðåóãîëüíîé.Èçó÷åíèå íîðìàëüíûõ îïåðàòîðîâ ëåãêî ñâîäèòñÿ ê èçó÷åíèþ íîðìàëüíûõ ìàòðèö:äîñòàòî÷íî âûáðàòü â V îðòîíîðìèðîâàííûé áàçèñ, òîãäà íîðìàëüíîñòü îïåðàòîðà ðàâíîñèëüíà íîðìàëüíîñòè åãî ìàòðèöû â äàííîì áàçèñå.

Îòñþäà ÿñíî, ÷òî íîðìàëüíûéîïåðàòîð ÿâëÿåòñÿ îïåðàòîðîì ïðîñòîé ñòðóêòóðû. Çàìåòèì òàêæå,÷òî ëþáîé îïåðàòîðïðîñòîé ñòðóêòóðû ìîæíî ñäåëàòü íîðìàëüíûì çà ñ÷åò âûáîðà ñêàëÿðíîãî ïðîèçâåäåíèÿ (äîêàæèòå!).Âàæíåéøèå êëàññû íîðìàëüíûõ îïåðàòîðîâ: óíèòàðíûå îïåðàòîðû (A∗ = A−1 ) èýðìèòîâû (ñàìîñîïðÿæåííûå) îïåðàòîðû (A∗ = A). Ïóñòü A íîðìàëüíûé îïåðàòîð.Ëåãêî äîêàçûâàåòñÿ, ÷òî óíèòàðíîñòü îïåðàòîðà A ðàâíîñèëüíà òîìó, ÷òî âñå åãîñîáñòâåííûå çíà÷åíèÿ ïî ìîäóëþ ðàâíû 1, à ýðìèòîâîñòü ðàâíîñèëüíà âåùåñòâåííîñòè ñîáñòâåííûõ çíà÷åíèé. Ïîä÷åðêíåì, ÷òî óíèòàðíîñòü è ýðìèòîâîñòü îïåðàòîðàçàâèñÿò îò ñêàëÿðíîãî ïðîèçâåäåíèÿ.38.4Ñàìîñîïðÿæåííûé îïåðàòîðÅñëè (Ax, y)V = (x, Ay)V ∀ x, y ∈ V , òî, â ñèëó åäèíñòâåííîñòè ñîïðÿæåííîãî îïåðàòîðà, A∗ = A.  òàêèõ ñëó÷àÿõ A íàçûâàåòñÿ ñàìîñîïðÿæåííûì îïåðàòîðîì.

Åñëè(Ax, x) > 0 ïðè âñåõ x ∈ V, x 6= 0, òî îïåðàòîð íàçûâàåòñÿ ïîëîæèòåëüíî îïðåäåëåííûì.Åñëè V = Cn è ñêàëÿðíîå ïðîèçâåäåíèå (x, y)S = y ∗ Sx îïðåäåëÿåòñÿ ñ ïîìîùüþýðìèòîâîé ïîëîæèòåëüíî îïðåäåëåííîé ìàòðèöû S ∈ Cn×n , òî, ñîãëàñíî ïðåäûäóùåìóðàçäåëó, ñàìîñîïðÿæåííîñòü îïåðàòîðà óìíîæåíèÿ íà ìàòðèöó A ∈ Cn×n îçíà÷àåò, ÷òîA = S −1 A∗ S.(∗)Çàìåòèì, ÷òî ðàâåíñòâî S −1/2 S S −1/2 = I îçíà÷àåò, ÷òî ñòîëáöû ìàòðèöû S −1/2 îáðàçóþò îðòîíîðìèðîâàííûé áàçèñ îòíîñèòåëüíî ñêàëÿðíîãî ïðîèçâåäåíèÿ (· ·)S . ÌàòðèöàB îïåðàòîðà óìíîæåíèÿ íà A â äàííîì áàçèñå îïðåäåëÿåòñÿ ðàâåíñòâîìAS −1/2 = S −1/2 B ⇒ B = S 1/2 AS −1/2 .Ñàìîñîïðÿæåííîñòü îçíà÷àåò, ÷òî B äîëæíà áûòü ýðìèòîâîé ìàòðèöåé ýòî ëåãêî òàêæå âûâåñòè íåïîñðåäñòâåííî èç (∗). Êàê âèäèì, ìàòðèöà A ïîäîáíà ýðìèòîâîéìàòðèöå B ⇒ âñå åå ñîáñòâåííûå çíà÷åíèÿ âåùåñòâåííû.25238.5Ëåêöèÿ 38Ìèíèìèçàöèÿ íà ïîäïðîñòðàíñòâàõÎáñóäèì âàæíóþ èäåþ, ïîçâîëÿþùóþ ñòðîèòü ìåòîäû ðåøåíèÿ ñèñòåìû Ax = b, ñîâñåìíå ïîõîæèå íà èçâåñòíûé íàì ìåòîä Ãàóññà. Ïóñòü A ∈ Cn×n íåâûðîæäåííàÿ ìàòðèöà.Ðàññìîòðèì òàê íàçûâàåìûå ïîäïðîñòðàíñòâà ÊðûëîâàLk = L(b, Ab, .

. . , Ak−1 b),2k = 1, 2, . . . ,è îïðåäåëèì xk ∈ Lk èç ñëåäóþùåãî óñëîâèÿ:||b − Axk ||2 = min ||b − Az||2 .z∈LkÂåêòîð r(z) = b − Az íàçûâàåòñÿ íåâÿçêîé âåêòîðà z . Î÷åâèäíî, âû÷èñëåíèå âåêòîðà xkñâîäèòñÿ ê çàäà÷å î ïåðïåíäèêóëÿðå, îïóùåííîì èç âåêòîðà b íà ïîäïðîñòðàíñòâîMk = ALk = {y ∈ Cn : y = Az, z ∈ Lk }.Êàê ðåøàòü òàêóþ çàäà÷ó ìû óæå çíàåì. Ïîíÿòíî òàêæå, ÷òî ðåøåíèå ñóùåñòâåííî îáëåã÷àåòñÿ íàëè÷èåì óäîáíîãî áàçèñà p1 , .

. . , pk â Lk (íàïðèìåð, ïðèâîäÿùåãî êîðòîãîíàëüíîé ñèñòåìå Ap1 , . . . , Apk ). óñëîâèÿõ òî÷íûõ âû÷èñëåíèé ïðîöåññ âñåãäà çàâåðøàåòñÿ ïîëó÷åíèåì ðåøåíèÿ x.Åñëè Ln = Cn , òî, î÷åâèäíî, xn = x. Åñëè íà êàêîì-òî øàãå Lk = Lk+1 , òîALk ⊂ Lk+1 = Lk ⇒ ALk = Lk(â ñèëó íåâûðîæäåííîñòè ìàòðèöû A).Ïîñêîëüêó b ∈ Lk , òî äîëæíî áûòü Az = b äëÿ êàêîãî-òî z ∈ Lk . Íåâûðîæäåííîñòü Aîçíà÷àåò, ÷òî z = x ⇒ x ∈ Lk ⇒ xk = x.

Çàìåòèì òàêæå, ÷òî åñëè x ∈ Lk (à çíà÷èò,xk = x), òî Lk = Lk+1 (äîêàæèòå!).Îáðàòèì âíèìàíèå íà òî, ÷òî xk ÷àñòî îêàçûâàåòñÿ õîðîøèì ïðèáëèæåíèåì ê ðåøåíèþ x ïðè k n. Îïèñàííàÿ èäåÿ ÿâëÿåòñÿ êëþ÷åâîé â ñîâðåìåííûõ ìåòîäàõ ðåøåíèÿñèñòåì â ìíîãî÷èñëåííûõ ïðèêëàäíûõ çàäà÷àõ.38.6Ìåòîä ñîïðÿæåííûõ ãðàäèåíòîâÄàííàÿ èäåÿ ïðèîáðåòàåò îñîáåííî ýëåãàíòíóþ ôîðìó â ñëó÷àå, êîãäà A ýðìèòîâàïîëîæèòåëüíî îïðåäåëåííàÿ ìàòðèöà.Ïóñòü x0 ïðîèçâîëüíûé íà÷àëüíûé âåêòîð.

Åñëè r0 = b − Ax0 = 0, òî ðåøåíèåíàéäåíî. Åñëè r0 6= 0, íà÷èíàåì ñòðîèòü ïîäïðîñòðàíñòâà ÊðûëîâàLk = L(r0 , Ar0 , . . . , Ak−1 r0 ) = L(p1 , . . . , pk ),ïîñëåäîâàòåëüíî ïîëó÷àÿ â íèõ áàçèñ p1 , . . . , pk ñî ñëåäóþùèì ñâîéñòâîì:(Api , pj ) = 0,2 Çàìåòèì, ÷òîäåííîãî âåêòîðîìb, Ab, . . . , Ak−1 bi 6= j;p 1 = r0 .Lk åñòü ïîäïðîñòðàíñòâî ìèíèìàëüíîãî èíâàðèàíòíîãî ïîäïðîñòðàíñòâà, ïîðîæb.

Характеристики

Тип файла
PDF-файл
Размер
1,67 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее