part1 (1106110), страница 4
Текст из файла (страница 4)
ma = P - N , ( 2-9 )
откуда N = P - ma = mg - ma = m( g - a ). ( 2-10 )
П о третьему закону Ньютона сила реакции опоры N равна и противоположно направлена силе давления гири на весы
, т.е. весу гири ( N =
). Поэтому вес
гири = m (g - a). ( 2-11 ) . Очевидно, что при а = g
= 0, т.е. все свободно падающие тела ничего не весят. Сила тяжести на поверхности Земли не является постоянной по двум причинам: во-первых, Земля, как известно не является идеальным шаром ( она сплюснута на
н ы электрическими силами. Силы упругости обусловлены деформациями. Деформации связаны с изменением взаимного расположения молекул, образующих рассматриваемое тело, причем силы возникают лишь тогда, когда деформации носят упругий характер. В этом случае справедлив закон Гука так, что
, ( 2-12 ) д
где x обозначает величину упругой деформации, а к - коэффициент пропорциональности, зависимый от свойств деформируемого тела и вида деформации. Частным примером проявления упругих сил служат силы реакции опор, направление которых считается всегда нормальным ( перпендикулярным ) к деформируемой поверхности. Другим примером действия упругих сил могут служить так называемые силы связи ( силы натяжения ).
Рассмотрение сил трения можно ограничить двумя примерами : силами сухого и силами вязкого трения7. Сила сухого трения скольжения известна из школьного курса физики: Fтр = -m N, где m - коэффициент трения, характеризующий свойства взаимодействующих поверхностей, а N - так называемая сила нормального давления . В отличие от сил вязкого трения эта сила не зависит от скорости движения тела. Сила вязкого трения, напротив, зависит от величины скорости, причем степень зависимости меняется по мере возрастания скорости. Для сравнительно небольших скоростей она может быть представлена в таком виде:
Величина коэффициента b зависит как от свойств самого тела, которое движется в вязкой среде, так и от свойств среды. Иногда эту силу трения удобнее представлять в таком виде:
где S - площадь соприкосновения тела со средой, k - коэффициент внутреннего трения среды, а величина производной, входящей в выражение для силы, носит название градиента скорости, описывающего быстроту изменения скорости слоев среды, увлекаемых телом, в направлении, перпендикулярном направлению скорости тела.
Практически важное значение имеет сила трения покоя , возникающая между соприкасающимися телами. Максимальную величину этой силы обычно оценивают по формуле для силы трения скольжения, хотя в действительности они несколько отличаются друг от друга.
§ 2- 5. Динамика вращательного движения материальной точки.
mg r Рис.9. Силы при | Специфика такого движения состоит в том, что для его описания приходится прибегать к некоторым ухищрениям для выбора системы отсчета, в которых можно записать уравнение движения. Если выбирать обычную неподвижную систему координат, то направления скоростей и ускорения точки будут ежесекундно изменяться относительно координатных осей, что не совсем удобно. Поэтому оперируют с так называемой следящей системой координат, т.е. с такой системой, |
ления ее осей совпадает с направлением скорости тела в этот момент времени и с
направлением радиуса вращения, проведенного в точку, где расположено тело в этот же момент времени. Важно отметить, что выбранная таким образом система
отсчета является неподвижной относительно инерциальной системы отсчета (на-пример, Земли), и в ней справедливы законы Ньютона.
Рассмотрим в качестве примера движение автомашины по выпуклому мосту, радиус которого r (см. рис.9) .Направим одну из осей следящей системы координат к центру моста, а другую - вдоль направления скорости v. Уравнение движения в этом случае имеет вид ( в проекции на вертикальную ось):
maц = mg - N, ( 2-15 )
где через N обозначена сила реакции моста, а mg - сила тяжести. Решая это уравнение относительно N, получаем :
N = mg - maц = m(g - ), ( 2-16 )
откуда следует, что при = g сила реакции моста будет равна 0 . Но это означает, что автомашина в этот момент времени не оказывает никакого давления на мост, т.е. она находится в состоянии невесомости.
Лекция 3 Динамика системы материальных точек.
§ 3 - 1. Центр масс системы материальных точек.
m1 А · r1= l1 · R l2 · В r2 m2 X Рис.10. К опреде- масс. | Центром масс двух материальных точек А и В с массами m1 и m2 соответственно называется точка С, лежащая на отрезке, соединяющем А и В, на расстояниях l1 и l2 от А и В, обратно пропорциональных массам точек (см. рис.10.), т.е. Если положения точек А и В задаются радиус-векторами r1 и r2 , то положение центра масс определяется радиусом - вектором R. Из рис.10 следует, что R = r1 + l1 и R = r2 + l2 , ( 3-2 ) |
У
множая первое из этих уравнений на m1, а второе - на m2 и складывая их, получим:
Из рис.10 и равенства ( 3-1 ) следует, что m2l2 = - m1l1. С учетом этого соотношения из выражения ( 3-3 ) можно определить значение радиуса - вектора R:
Обобщая это выражение для произвольного числа материальных точек, получим:
где = М - полная масса системы точек.
Скорость центра масс такой системы определяется дифференцированием ( 3-5 ):
Величины mivi представляют собой импульсы отдельных точек, поэтому урав-нение ( 3-6 ) можно переписать в следующем виде:
г де через Р обозначен суммарный импульс системы. Дифференцируя ( 3-7 ), находим выражение для ускорения центра масс системы А:
§ 3 -2 Закон изменения импульса системы материальных точек.
Для простоты рассмотрим движение системы, состоящей из трех точек, на
каждую из которых действуют внутренние силы fik и внешние - Fi , где индекс i представляет номер точки. Уравнения движения для каждой точки имеют вид:
Складывая эти уравнения, получим:
По третьему закону Ньютона внутренние силы попарно равны по величине и противоположны по направлению ( например, f12 = -f21). Потому сумма всех внутренних сил равна нулю, и
где через Р обозначен суммарный импульс системы. Обобщая ( 3-11 ) для любого числа материальных точек, можно записать следующее выражение:
которое принято называть законом изменения импульса системы материальных точек. Как видно из этого выражения, изменение суммарного импульса определяется равнодействующей всех внешних сил, действующих на систему. Если же эта равнодействующая равна нулю ( или на систему не действуют никакие внешние силы), то суммарный импульс системы остается постоянным. Это следствие уравнения ( 3-12 ) называется законом сохранения импульса. Другим следствием рассмотренного закона изменения импульса служит теорема о движении центра масс, которая утверждает, что центр масс системы материальных точек под действием внешних сил движется как материальная точка суммарной массы, к которой приложены все внешние силы, и записывается в таком виде: