Убиквитин-независимый протеолиз основного белка миелина и его роль в развитии экспериментального аутоиммунного энцефаломиелита (1105762), страница 21
Текст из файла (страница 21)
N. Liossis and P. P. Sfikakis // Clin Immunol. – 2008. – Vol. 127, no. 3. – P. 280-285.125. Advances in the treatment of relapsing-remitting multiple sclerosis / R. Tanasescu, C.Ionete, I. J. Chou, et al. // Biomed J. – 2014. – Vol. 37, no. 2. – P. 41-49.126. Multiple sclerosis therapies: molecular mechanisms and future / P. Fontoura and H.Garren // Results Probl Cell Differ.
– 2010. – Vol. 51, no. – P. 259-285.127. Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agentmonomethylfumarate / R. de Jong, A. C. Bezemer, T. P. Zomerdijk, et al. // Eur J Immunol. –1996. – Vol. 26, no. 9. – P. 2067-2074.128. The antipsoriatic agent dimethylfumarate immunomodulates T-cell cytokine secretionand inhibits cytokines of the psoriatic cytokine network / H.
M. Ockenfels, T. Schultewolter, G.Ockenfels, et al. // Br J Dermatol. – 1998. – Vol. 139, no. 3. – P. 390-395.129. Dimethylfumarate is an inhibitor of cytokine-induced E-selectin, VCAM-1, and ICAM-1expression in human endothelial cells / M. Vandermeeren, S. Janssens, M. Borgers, et al. //Biochem Biophys Res Commun. – 1997. – Vol.
234, no. 1. – P. 19-23.130. Multiple sclerosis: current and emerging disease-modifying therapies and treatmentstrategies / D. M. Wingerchuk and J. L. Carter // Mayo Clin Proc. – 2014. – Vol. 89, no. 2. – P.225-240.131. Immunotoxins for targeted cancer therapy / R. J. Kreitman // AAPS J.
– 2006. – Vol. 8,no. 3. – P. E532-551.132. Increased sophistication of immunotoxins / A. E. Frankel // Clin Cancer Res. – 2002. –Vol. 8, no. 4. – P. 942-944.133. Amelioration of proteolipid protein 139-151-induced encephalomyelitis in SJL mice bymodified amino acid copolymers and their mechanisms / J.
N. Stern, Z. Illes, J. Reddy, et al. //Proc Natl Acad Sci U S A. – 2004. – Vol. 101, no. 32. – P. 11743-11748.134. Mannosylated PLP(139-151) induces peptide-specific tolerance to experimentalautoimmune encephalomyelitis / M. E. Luca, J. M. Kel, W. van Rijs, et al. // J Neuroimmunol. –2005. – Vol. 160, no. 1-2. – P. 178-187.135. Design and synthesis of a cyclic double mutant peptide (cyclo(87-99)[A91,A96]MBP8799) induces altered responses in mice after conjugation to mannan: implications in the108immunotherapy of multiple sclerosis / M. Katsara, G.
Deraos, T. Tselios, et al. // J Med Chem. –2009. – Vol. 52, no. 1. – P. 214-218.136. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class IIdefined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blindplacebo-controlled clinical trial and 5 years of follow-up treatment / K. G.
Warren, I. Catz, L. Z.Ferenczi, et al. // Eur J Neurol. – 2006. – Vol. 13, no. 8. – P. 887-895.137. A regenerative approach to the treatment of multiple sclerosis / V. A. Deshmukh, V.Tardif, C. A. Lyssiotis, et al. // Nature. – 2013. – Vol. 502, no. 7471. – P. 327-332.138. Adeno-associated viral-mediated catalase expression suppresses optic neuritis inexperimental allergic encephalomyelitis / J. Guy, X.
Qi and W. W. Hauswirth // Proc Natl AcadSci U S A. – 1998. – Vol. 95, no. 23. – P. 13847-13852.139. Inhibition of the immunoproteasome ameliorates experimental autoimmuneencephalomyelitis / M. Basler, S. Mundt, T. Muchamuel, et al. // EMBO Mol Med. – 2014. –Vol. 6, no. 2. – P. 226-238.140. Treatment of established relapsing experimental autoimmune encephalomyelitis with theproteasome inhibitor PS-519 / C. L.
Vanderlugt, S. M. Rahbe, P. J. Elliott, et al. // J Autoimmun.– 2000. – Vol. 14, no. 3. – P. 205-211.141. Protection against experimental autoimmune encephalomyelitis by a proteasomemodulator / H. Hosseini, P. Andre, N. Lefevre, et al. // J Neuroimmunol. – 2001. – Vol. 118, no.2. – P. 233-244.142. Two minor determinants of myelin basic protein induce experimental allergicencephalomyelitis in SJL/J mice / D. H.
Kono, J. L. Urban, S. J. Horvath, et al. // J Exp Med. –1988. – Vol. 168, no. 1. – P. 213-227.143. The encephalomyelitic activity of myelin isolated by ultracentrifugation / R. H. Laatsch,M. W. Kies, S. Gordon, et al. // J Exp Med. – 1962. – Vol. 115, no. – P. 777-788.144. Recognition and degradation of myelin basic protein peptides by serum autoantibodies:novel biomarker for multiple sclerosis / A. A. Belogurov, Jr., I.
N. Kurkova, A. Friboulet, et al. //J Immunol. – 2008. – Vol. 180, no. 2. – P. 1258-1267.145. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of amyelin basic protein epitope: T cell receptor antagonism and reduction of interferon gamma andtumor necrosis factor alpha production / N. Karin, D. J. Mitchell, S. Brocke, et al. // J Exp Med.– 1994. – Vol. 180, no. 6.
– P. 2227-2237.146. Liposome-encapsulated peptides protect against experimental allergic encephalitis / A. A.Belogurov, Jr., A. V. Stepanov, I. V. Smirnov, et al. // FASEB J. – 2013. – Vol. 27, no. 1. – P.222-231.109147. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken,sometimes the egg / A. Ciechanover and P. Brundin // Neuron.
– 2003. – Vol. 40, no. 2. – P. 427446.148. Endoproteolytic activity of the proteasome / C. W. Liu, M. J. Corboy, G. N. DeMartino,et al. // Science. – 2003. – Vol. 299, no. 5605. – P. 408-411.149. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins bythe ubiquitin pathway / S. Gross-Mesilaty, E. Reinstein, B. Bercovich, et al. // Proc Natl AcadSci U S A. – 1998. – Vol. 95, no. 14.
– P. 8058-8063.150. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination / Y.Murakami, S. Matsufuji, T. Kameji, et al. // Nature. – 1992. – Vol. 360, no. 6404. – P. 597-599.151. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes / A. Hershko andI. A. Rose // Proc Natl Acad Sci U S A. – 1987. – Vol.
84, no. 7. – P. 1829-1833.152. Developmental regulation of myelin basic protein in dispersed cultures / E. Barbarese andS. E. Pfeiffer // Proc Natl Acad Sci U S A. – 1981. – Vol. 78, no. 3. – P. 1953-1957.153. Migrating oligodendrocyte progenitor cells swell prior to soma dislocation / P. Happel, K.Moller, N. K. Schwering, et al. // Sci Rep. – 2013. – Vol. 3, no. – P. 1806.154. Myelin basic protein-diverse conformational states of an intrinsically unstructured proteinand its roles in myelin assembly and multiple sclerosis / G. Harauz, N. Ishiyama, C. M.
Hill, etal. // Micron. – 2004. – Vol. 35, no. 7. – P. 503-542.155. Charge effects modulate actin assembly by classic myelin basic protein isoforms / C. M.Hill and G. Harauz // Biochem Biophys Res Commun. – 2005. – Vol. 329, no. 1. – P. 362-369.156. Interaction of the 18.5-kD isoform of myelin basic protein with Ca2+ -calmodulin: effectsof deimination assessed by intrinsic Trp fluorescence spectroscopy, dynamic light scattering, andcircular dichroism / D. S. Libich, C. M. Hill, I.
R. Bates, et al. // Protein Sci. – 2003. – Vol. 12,no. 7. – P. 1507-1521.157. Proline substitutions and threonine pseudophosphorylation of the SH3 ligand of 18.5-kDamyelin basic protein decrease its affinity for the Fyn-SH3 domain and alter process developmentand protein localization in oligodendrocytes / G. S. Smith, M. De Avila, P. M. Paez, et al. // JNeurosci Res. – 2012. – Vol. 90, no. 1. – P. 28-47.158. More than just tails: intrinsic disorder in histone proteins / Z. Peng, M. J.
Mizianty, B.Xue, et al. // Mol Biosyst. – 2012. – Vol. 8, no. 7. – P. 1886-1901.159. A 26 S protease subunit that binds ubiquitin conjugates / Q. Deveraux, V. Ustrell, C.Pickart, et al. // J Biol Chem. – 1994. – Vol. 269, no. 10. – P. 7059-7061.110160. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domaininteraction / P. Schreiner, X. Chen, K. Husnjak, et al. // Nature. – 2008. – Vol. 453, no. 7194. –P. 548-552.161. Interaction of myelin basic protein with cytoskeletal and signaling proteins in culturedprimary oligodendrocytes and N19 oligodendroglial cells / J.
M. Boggs, L. Homchaudhuri, G.Ranagaraj, et al. // BMC Res Notes. – 2014. – Vol. 7, no. – P. 387.162. Monitoring the total available calmodulin concentration in intact cells over thephysiological range in free Ca2+ / D. J. Black, Q. K. Tran and A. Persechini // Cell Calcium. –2004. – Vol. 35, no.
5. – P. 415-425.163. The relationship between the free concentrations of Ca2+ and Ca2+-calmodulin in intactcells / A. Persechini and B. Cronk // J Biol Chem. – 1999. – Vol. 274, no. 11. – P. 6827-6830.164. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for thedevelopment of new applications / R.
Arnon and R. Aharoni // Proc Natl Acad Sci U S A. – 2004.– Vol. 101 Suppl 2, no. – P. 14593-14598.165. Multiple sclerosis: a coordinated immunological attack against myelin in the centralnervous system / L. Steinman // Cell. – 1996. – Vol. 85, no. 3. – P. 299-302.166. Early reduction of NeuN antigenicity induced by soman poisoning in mice can be used topredict delayed neuronal degeneration in the hippocampus / J.
M. Collombet, C. Masqueliez, E.Four, et al. // Neurosci Lett. – 2006. – Vol. 398, no. 3. – P. 337-342.167. Catalytic antibodies: balancing between Dr. Jekyll and Mr. Hyde / A. Belogurov, Jr., A.Kozyr, N. Ponomarenko, et al. // Bioessays. – 2009. – Vol. 31, no. 11. – P. 1161-1171.168. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis /E.