Диссертация (1105446), страница 29
Текст из файла (страница 29)
1992. V.25. N.8. P.1258.60.Petukhov D.I., Napolskii K.S., Berekchiyan M.V., Lebedev A.G., Eliseev A.A.Comparative study of structure and permeability of porous oxide films on aluminumobtained by single- and two-step anodization. // ACS Applied Materials & Interfaces.2013. V.5. N.16. P.7819-7824.61.Kim M., Kim H., Bae C., Lee J., Yoo H., Moreno J.M.M., Shin H. Initial self-ordering ofporous anodic alumina: transition from polydispersity to monodispersity.
// The Journalof Physical Chemistry C. 2014. V.118. N.46. P.26789-26795.62.Zhou W.Z., Su Z.X. Formation mechanism of porous anodic aluminium and titaniumoxides. // Advanced Materials. 2008. V.20. N.19. P.3663-3667.14463.Skeldon P., Thompson G.E., Garcia-Vergara S.J., Iglesias-Rubianes L., BlancoPinzon C.E. A tracer study of porous anodic alumina.
// Electrochemical and Solid-StateLetters. 2006. V.9. N.11. P.B47-B51.64.Garcia-Vergara S.J., Skeldon P., Thompson G.E., Habazaki H. A flow model of porousanodic film growth on aluminium. // Electrochimica Acta. 2006. V.52. N.2. P.681-687.65.Cherki C., Siejka J. Study by nuclear microanalysis and O18 tracer techniques of theoxygen transport processes and the growth laws for porous anodic oxide layers onaluminum. // Journal of the Electrochemical Society.
1973. V.120. N.6. P.784-791.66.Siejka J., Ortega C. An O18 study of field-assisted pore formation in compact anodicoxide films on aluminum. // Journal of the Electrochemical Society. 1977. V.124. N.6.P.883-891.67.Nagayama M., Tamura K. Dissolution of the anodic oxide film on aluminium in asulphuric acid solution.
// Electrochimica Acta. 1967. V.12. N.8. P.1097-1107.68.Garcia-Vergara S.J., Skeldon P., Thompson G.E., Habakaki H. Pore development inanodic alumina in sulphuric acid and borax electrolytes. // Corrosion Science. 2007. V.49.N.9. P.3696-3704.69.Mercier D., Van Overmeere Q., Santoro R., Proost J. In-situ optical emissionspectrometry during galvanostatic aluminum anodising. // Electrochimica Acta.
2011.V.56. N.3. P.1329-1336.70.Baron-Wiechec A., Ganem J.J., Garcia-Vergara S.J., Skeldon P., Thompson G.E.,Vickridge I.C. Tracer study of porous film growth on aluminum in phosphoric acid. //Journal of the Electrochemical Society. 2010. V.157. N.11. P.C399-C407.71.Nielsch K., Choi J., Schwirn K., Wehrspohn R.B., Gosele U. Self-ordering regimes ofporous alumina: the 10% porosity rule. // Nano Letters. 2002. V.2.
N.7. P.677-680.72.Houser J.E., Hebert K.R. The role of viscous flow of oxide in the growth of self-orderedporous anodic alumina films. // Nature Materials. 2009. V.8. N.5. P.415-420.73.Masuda H., Fukuda K. Ordered metal nanohole arrays made by a 2-step replication ofhoneycomb structures of anodic alumina. // Science. 1995. V.268. N.5216. P.1466-1468.74.Masuda H., Satoh M. Fabrication of gold nanodot array using anodic porous alumina asan evaporation mask. // Japanese Journal of Applied Physics. 1996.
V.35. N.1B.P.L126-L129.75.Shingubara S., Morimoto K., Sakaue H., Takahagi T. Self-organization of a porousalumina nanohole array using a sulfuric/oxalic acid mixture as electrolyte. //Electrochemical and Solid-State Letters. 2004. V.7. N.3. P.E15-E17.14576.Ono S., Saito M., Ishiguro M., Asoh H. Controlling factor of self-ordering of anodicporous alumina. // Journal of the Electrochemical Society. 2004. V.151. N.8.P.B473-B478.77.Sun C., Luo J., Wu L., Zhang J.
Self-ordered anodic alumina with continuously tunablepore intervals from 410 to 530 nm. // ACS Applied Materials & Interfaces. 2010. V.2.N.5. P.1299-1302.78.Lukatskaya M.R., Gogotsi Y. Three-dimensional nanostructures from porous anodicalumina. // MRS Communications. 2012. V.2. N.02. P.51-54.79.Chu S.Z., Wada K., Inoue S., Isogai M., Yasumori A. Fabrication of ideally orderednanoporous alumina films and integrated alumina nanotubule arrays by high-fieldanodization. // Advanced Materials. 2005. V.17. N.17. P.2115-2119.80.Schwirn K., Lee W., Hillebrand R., Steinhart M., Nielsch K., Gosele U.
Self-orderedanodic aluminum oxide formed by H2SO4 hard anodization. // ACS Nano. 2008. V.2.N.2. P.302-310.81.Li Y.B., Zheng M.J., Ma L. High-speed growth and photoluminescence of porous anodicalumina films with controllable interpore distances over a large range. // Applied PhysicsLetters. 2007. V.91. N.7. P.073109.82.Norek M., Dopierala M., Stepniowski W.J.
Ethanol influence on arrangement andgeometrical parameters of aluminum concaves prepared in a modified hard anodizationfor fabrication of highly ordered nanoporous alumina. // Journal of ElectroanalyticalChemistry. 2015. V.750. P.79-88.83.Petukhov D.I., Napolskii K.S., Eliseev A.A. Permeability of anodic alumina membraneswith branched channels. // Nanotechnology. 2012. V.23, N.33.
P.335601.84.Santos A., Montero-Moreno J.M., Bachmann J., Nielsch K., Formentin P., Ferre-BorrullJ., Pallares J., Marsal L.F. Understanding pore rearrangement during mild to hardtransition in bilayered porous anodic alumina membranes. // ACS Applied Materials &Interfaces. 2011. V.3. N.6. P.1925-1932.85.Li F., Zhang L., Metzger R.M. On the growth of highly ordered pores in anodizedaluminum oxide.
// Chemistry of Materials. 1998. V.10. N.9. P.2470-2480.86.Napolskii K.S., Roslyakov I.V., Eliseev A.A., Byelov D.V., Petukhov A.V.,Grigoryeva N.A., Bouwman W.G., Lukashin A.V., Chumakov A.P., Grigoriev S.V.The kinetics and mechanism of long-range pore ordering in anodic films on aluminum. //The Journal of Physical Chemistry C.
2011. V.115. N.48. P.23726-23731.14687.Choi Y.C., Bu S.D. Nanopore domain growth behavior by nanopore changes near domainboundaries in porous anodic alumina. // Journal of Nanoscience and Nanotechnology.2011. V.11. N.2. P.1346-1349.88.de Jeu W.H., Ostrovskii B.I., Shalaginov A.N. Structure and fluctuations of smecticmembranes. // Reviews of Modern Physics. 2003. V.75. N.1.
P.181-235.89.Ng C.K.Y., Ngan A.H.W. Precise control of nanohoneycomb ordering over anodicaluminum oxide of square centimeter areas. // Chemistry of Materials. 2011. V.23. N.23.P.5264-5268.90.Stepniowski W.J., Zasada D., Bojar Z. First step of anodization influences the finalnanopore arrangement in anodized alumina.
// Surface and Coatings Technology. 2011.V.206. N.6. P.1416-1422.91.Stepniowski W.J., Nowak-Stepniowska A., Bojar Z. Quantitative arrangement analysis ofanodic alumina formed by short anodizations in oxalic acid. // Materials Characterization.2013. V.78. P.79-86.92.Abramoff M.D., Magalhaes P.J., Ram S.J.
Image processing with ImageJ. // BiophotonicsInternational. 2004. V.11. N.7. P.36-42.93.Matefi-Tempfli S., Matefi-Tempfli M., Piraux L. Characterization of nanopores orderingin anodic alumina. // Thin Solid Films. 2008. V.516. N.12. P.3735-3740.94.Zaraska L., Stepniowski W.J., Sulka G.D., Ciepiela E., Jaskula M. Analysis of nanoporearrangement and structural features of anodic alumina layers formed by two-stepanodizing in oxalic acid using the dedicated executable software. // Applied Physics A.2014. V.114. N.2. P.571-577.95.Borba J.R., Brito C., Migowski P., Vale T.B., Stariolo D.A., Teixeira S.R., Feil A.F.Quantitative characterization of hexagonal packings in nanoporous alumina arrays: a casestudy.
// The Journal of Physical Chemistry C. 2013. V.117. N.1. P.246-251.96.Pecharsky V., Zavalij P. Fundamentals of powder diffraction and structuralcharacterization of materials. // Boston: Kluwer Academic Publishers, 2003.97.Dore J.C., Benfield R.E., Grandjean D., Schmid G., Kroll M., Le Bolloc'h, D. "Structuralstudies of mesoporous alumina membranes by small angle X-ray scattering" in book"Studies in surface science and catalysis characterization of porous solids VI. Book 144:Proceedings of the 6th International symposium on the characterization of porous solids(COPS-VI)".
// Amsterdam: Elsevier Science B.V., 2002.98.Benfield R.E., Dore J.C., Grandjean D., Kroll M. Structural studies of metallic nanowireswith synchrotron radiation. // Journal of Alloys and Compounds. 2004. V.362. N.1-2.P.48-55.14799.ГОСТ 4784-97. Алюминий и сплавы алюминиевые деформируемые. Марки. //Минск: Межгос.
Совет по стандартизации, метрологии и сертификации, 1997.100. Lo D., Budiman A. Fabrication and characterization of porous anodic alumina films fromimpure aluminum foils. // Journal of the Electrochemical Society. 2007. V.154. N.1.P.C60-C66.101. Yu W.H., Fei G.T., Chen X.M., Xue F.H., Xu X.J. Influence of defects on the orderingdegree of nanopores made from anodic aluminum oxide. // Physics Letters A. 2006.V.350. N.5-6. P.392-395.102. Beck G., Petrikowski K.
Influence of the microstructure of the aluminum substrate on theregularity of the nanopore arrangement in an alumina layer formed by anodic oxidation. //Surface and Coatings Technology. 2008. V.202. N.21. P.5084-5091.103. НапольскийК.С.Электрохимическоеформированиепространственно-упорядоченных металлических наноструктур в пористых матрицах: диссертациякандидата химических наук. М., 2009.104. Fan L.X., Guo D.L., Ren F., Fu Q., Jiang C.Z. Substrate grain boundary effects on theordering of nanopores in anodic aluminum oxide. // Solid State Comm. 2008. V.148.P.286-288.105.
Lu B., Bharathulwar S., Laughlin D.E., Lambeth D.N. Time and orientation dependenceof ordering in anodized aluminum for self-organized magnetic arrays. // Journal ofApplied Physics. 2000. V.87. N.9. P.4721-4723.106. Beck G., Bretzler R. Regularity of nanopores in anodic alumina formed on orientatedaluminium single-crystals. // Materials Chemistry and Physics. 2011.
V.128. N.3.P.383-387.107. Hartman P., Perdok W.G. On the relations between structure and morphology of crystals.// Acta Crystallographica. 1955. V.8. N.1. P.49-52.108. Beck G., Funk S. Correlation between optical appearance and orientation of aluminium. //Surface and Coatings Technology. 2012. V.206. N.8-9. P.2371-2379.109. Jessensky O., Muller F., Gosele U. Self-organized formation of hexagonal pore arrays inanodic alumina. // Applied Physics Letters. 1998. V.72.