Диссертация (1105240), страница 16
Текст из файла (страница 16)
2004. Vol. 21, no. 5. P. S1083.40. Cardona M., Chamberlin R. V., Marx W. The history of the stretched exponential function // Annalen der Physik. 2007. Vol. 16, no. 12. P. 842–845.41. Michalas L., Koutsoureli M., Papandreou E. et al. Dielectric chargingeffects in floating electrode MEMS capacitive switches // Microelectronics106Reliability. 2015. Vol. 55, no. 9–10. P. 1891 – 1895.
Proceedings ofthe 26th European Symposium on Reliability of Electron Devices, FailurePhysics and AnalysisSI:Proceedings of ESREF 2015.42. Wang L., Tang J.-Y., Huang Q.-A. Effect of Environmental Humidity onDielectric Charging Effect in RF MEMS Capacitive Switches Based onC-V; V Properties // Microelectromechanical Systems, Journal of.
2013.Vol. 22, no. 3. P. 637–645.43. Molinero D., Castañer L. Modeling and measuring transient dischargecurrent of microelectromechanical switches after dielectric charging byvoltage stress // Applied Physics Letters. 2009. Vol. 94, no. 4.44. Melitz W., Shen J., Kummel A. C., Lee S. Kelvin probe force microscopyand its application // Surface Science Reports. 2011. Vol. 66, no. 1. P. 1– 27.45. Anderson P.
W. Absence of Diffusion in Certain Random Lattices // Phys.Rev. 1958. Vol. 109. P. 1492–1505.46. Mott N. F. Conduction in non-crystalline materials // Philosophical Magazine. 1969. Vol. 19, no. 160. P. 835–852.47. Miller A., Abrahams E. Impurity Conduction at Low Concentrations //Phys.
Rev. 1960. Vol. 120. P. 745–755.48. Fateev M. P. Theory of hopping transfer in disordered systems // Physicsof the Solid State. 2010. Vol. 52, no 6. P. 1123–1130.49. Shlimak I., Kraftmakher Y., Ussyshkin R., Zilberberg K. 1f hopping noisein crystalline germanium // Solid State Communications. 1995.
Vol. 93,no. 10. P. 829 – 832.50. Kozub V. I. Low-frequency noise due to site energy fluctuations in hoppingconductivity // Solid State Communications. 1996. Vol. 97, no. 10. P. 843– 846.51. Burin A. L., Shklovskii B. I., Kozub V. I. et al. Many electron theory of 1fnoise in hopping conductivity // Phys. Rev. B. 2006. Vol. 74. P.
075205.10752. Prokhorov L. G. Slow polarization as possible explanation of chargingof the LIGO test masses // LIGO Techincal Note T1500468.2015.DCC: https://dcc.ligo.org/T1500468.53. Ugolini D., Fitzgerald C., Rothbarth I., Wang J. Discharging fused silicaoptics occluded by an electrostatic drive // Review of Scientific Instruments. 2014. Vol. 85, no. 3.54. Campsie P., Cunningham L., Hendry M. et al. Charge mitigation techniques using glow and corona discharges for advanced gravitational wavedetectors // Classical and Quantum Gravity.2011.Vol. 28, no. 21.P.
215016.55. Campsie P., Hough J., Rowan S., Hammond G. D. A measurement of noisecreated by fluctuating electrostatic charges on dielectric surfaces using atorsion balance // Classical and Quantum Gravity. 2014. Vol. 31, no. 17.P. 175007.56. Adhikari R. X. Gravitational radiation detection with laser interferometry // Rev. Mod. Phys. 2014. Vol. 86. P. 121–151.57. Kondratiev N. M., Gurkovsky A. G., Gorodetsky M. L. Thermal noise andcoating optimization in multilayer dielectric mirrors // Phys.
Rev. D. 2011.Vol. 84. P. 022001.58. Braginsky V. B., Vyatchanin S. P. Thermodynamical fluctuations in opticalmirror coatings // Physics Letters A. 2003. Vol. 312, no. 3–4. P. 244 –255.59. Nawrodt R., Schwarz C., Kroker S. et al. Investigation of mechanical lossesof thin silicon flexures at low temperatures // Classical and QuantumGravity.
2013. Vol. 30, no. 11. P. 115008.60. Weiss R. Silicon mirror cooled to 120K // LIGO Technical Note T1200093.2012. DCC: https://dcc.ligo.org/T1200093.61. Kralik T., Katsir D. Black surfaces for infrared, aerospace, and cryogenicapplications // Proceedings of SPIE. 2009. Vol. 7298, no. 729813.
P. 1–9.10862. Grasso S., Altucci C., Barone F. et al. Electrostatic systems for fine controlof mirror orientation in interferometric GW antennas // Physics LettersA. 1998. Vol. 244, no. 5. P. 360 – 370.63. Копцов Д. В., Прохоров Л. Г., Митрофанов В. П. Интерферометрический датчик малых колебаний крутильных осцилляторов // Приборы итехника эксперимента.
2013. Т. 56, № 2. С. 100–104.Koptsov D. V., Prokhorov L. G., Mitrofanov V. P. An interferometricsensor for measuring small oscillations of torsional oscillators //Instruments and Experimental Techniques 2013. Vol. 56, no. 2. P. 215-218.64. Zuo L., Chen X., Nayfeh S. Design and Analysis of a New Type of Electromagnetic Damper With Increased Energy Density // Journal of Vibrationand Acoustics. 2011. Vol. 133. 8 p.65. Prokhorov L. G., Mitrofanov V.
P. Space charge polarization in fused silicatest masses of a gravitational wave detector associated with an electrostaticdrive // Classical and Quantum Gravity. 2010. Vol. 27, no. 22. P. 225014.66. Welch P. D. The use of fast Fourier transform for the estimation of powerspectra: A method based on time averaging over short, modified periodograms // Audio and Electroacoustics, IEEE Transactions on. 1967.Vol. 15, no.
2. P. 70–73.67. Frigo M., Johnson S. G. The Design and Implementation of FFTW3 //Proceedings of the IEEE. 2005. Vol. 93, no. 2. P. 216–231. Special issueon “Program Generation, Optimization, and Platform Adaptation”.68. Heinzel G., Rüdiger A., Schilling R. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensivelist of window functions and some new at-top windows // Max PlanckSociety eDoc Server. 2002. P. 1–84.69.
Sorazu B., Strain K. A., Heng I. S., Kumar R. Violin mode amplitudeglitch monitor for the presence of excess noise on the monolithic silicasuspensions of GEO 600 // Classical and Quantum Gravity. 2010. Vol. 27,109no. 15. P. 155017.70. Cervantes F. G., Livas J., Silverberg R. et al. Characterization of photoreceivers for LISA // Classical and Quantum Gravity. 2011. Vol. 28, no. 9.P. 094010.71.
Hrabina J., Lazar J., Holá M., Číp O. Frequency Noise Properties of Lasersfor Interferometry in Nanometrology // Sensors. 2013. Vol. 13, no. 2.P. 2206.72. Phillips J. C. Stretched exponential relaxation in molecular and electronicglasses // Reports on Progress in Physics.
1996. Vol. 59, no. 9. P. 1133.73. Song S.-H., Yang H.-H., Han C.-H. et al. Metal-oxide-semiconductor fieldeffect transistor humidity sensor using surface conductance // AppliedPhysics Letters. 2012. Vol. 100, no. 10.74. Farahani H., Wagiran R., Hamidon M. N. Humidity Sensors Principle,Mechanism, and Fabrication Technologies: A Comprehensive Review //Sensors. 2014. Vol. 14, no. 5. P.
7881–7939.75. Ho P., Lehovec K., Fedotowsky L. Charge motion on silicon oxide surfaces // Surface Science. 1967. Vol. 6, no. 4. P. 440 – 460.76. Castagne R., Hesto P., Vapaille A. Surface conductivity of the insulator ofan MIS or MIM device // Thin Solid Films.
1973. Vol. 17, no. 3. P. 253– 264.77. Dieterich W., Maass P. Non-Debye relaxations in disordered ionic solids //Chemical Physics. 2002. Vol. 284, no. 1–2. P. 439 – 467.78. Koptsov D. V., Prokhorov L. G., Mitrofanov V. P. Effects of humidityon the interaction between a fused silica test mass and an electrostaticdrive // Physics Letters A. 2015. Vol. 379, no. 40–41. P. 2535 – 2540.79. Reddy J. N. An Introduction to the Finite Element Method. 3 edition.McGraw-Hill, 2005. ISBN: 9780071267618.80. Sessler G.
M. Physical principles of electrets // Electrets / editedbyG. M. Sessler. Springer Berlin Heidelberg, 1987. Vol. 33 of Topics110in Applied Physics. P. 66–67.81. COMSOL. ACDC Module, User’s guide // Version 5.2a. 2016.82. COMSOL. Chemical Reaction Engineering Module, User’s guide // Version 5.2a. 2016.83. Awakuni Y., Calderwood J. H. Water vapour adsorption and surface conductivity in solids // Journal of Physics D: Applied Physics. 1972. Vol.
5,no. 5. P. 1038.84. Haspel H., Laufer N., Bugris V. et al. Water-Induced Charge TransportProcesses in Titanate Nanowires: An Electrodynamic and Calorimetric Investigation // The Journal of Physical Chemistry C. 2012. Vol. 116, no. 35.P. 18999–19009.85. Koptsov D. V., Prokhorov L. G., Mitrofanov V. P. Measurement of fluctuations of electrostatic force acting between a dielectric plate and an electrostatic drive // Review of Scientific Instruments. 2017. Vol. 88, no.
4.P. 044701.86. Huillery J., Millioz F., Martin N. On the Description of SpectrogramProbabilities With a Chi-Squared Law // IEEE Transactions on SignalProcessing. 2008. Vol. 56, no. 6. P. 2249–2258.87. Welch B. L. The generalization of ‘student’s’ problem when several differentpopulation variances are involved // Biometrika. 1947. Vol. 34, no. 1-2.P. 28–35.88. Sorazu B. Charging issues at the sites // LIGO Document G1401033.2014.
DCC: https://dcc.ligo.org/G1401033.89. Abernathy M. R., Smith N., Korth W. Z., Adhikari R. X., Prokhorov L. G.,Koptsov D. V., Mitrofanov V. P. Measurement of mechanical loss in theAcktar Black coating of silicon wafers // Classical and Quantum Gravity.2016. Vol. 33, no. 18. P. 185002.90. França D. R., Blouin A. All-optical measurement of in-plane and out-ofplane Young’s modulus and Poisson’s ratio in silicon wafers by means of111vibration modes // Measurement Science and Technology. 2004.
Vol. 15,no. 5. P. 859.91. COMSOL. Structural Mechanics Module, User’s guide // Version 5.2a.2016.92. Ландау Л. Д., Лифшиц E. M. Теория упругости. 4 изд. Наука, 1987.С. 174–177.93. COMSOL. Heat Transfer Module, User’s guide // Version 5.2a. 2016.94. Reid S., Cagnoli G., Crooks D. R. M. et al. Mechanical dissipation insilicon flexures // Physics Letters A. 2006. Vol. 351, no.