Главная » Просмотр файлов » Диссертация

Диссертация (1103693), страница 6

Файл №1103693 Диссертация (Математические аспекты эволюции цилиндрических вихрей в вязком теплопроводном газе) 6 страницаДиссертация (1103693) страница 62019-03-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Моделирование турбулентности, обеспечивающее приемлемоепредсказание измеряемых в эксперименте осредненных параметров потока врамках стационарных уравнений Рейнольдса.2. Нестационарные уравнения Рейнольдса в сочетании с условиямисимметрии (приводят к симметричным нестационарным решениям).3. Нестационарные уравнения Рейнольдса в сочетании с традиционнымиполуэмпирическими моделями турбулентности без привлечения условиясимметрии.4.

Нестационарные уравнения Рейнольдса в сочетании со специальноразработанными полуэмпирическими моделями турбулентности.В работах [17-19] задачи замыкания уравнений Рейнольдса решаются дляразличных уровней сложности. Выбор модели турбулентности зависит отряда особенностей задачи: характера турбулентного потока, необходимойточности вычислений, наличия вычислительных ресурсов и возможныхвременных затрат.Полуэмпирические модели турбулентности разработаны, в основном, длярасчета стационарных и слабо нестационарных течений, а их калибровка(подбор эмпирических констант) осуществляется для достаточно тонкихсдвиговых слоев в рамках уравнений пограничного слоя или уравненийРейнольдса.35Использование осредненных по Рейнольдсу уравнений Навье-Стоксатребует намного меньших, чем DNS, вычислительных ресурсов.

В рамкахRANS моделируется вклад в среднее движение всех масштабовтурбулентности, за счет чего данный подход успешно применяется впрактических расчетах.Решение осредненных по Рейнольдсу уравнений Навье-Стокса,замкнутых про помощи той или иной полуэмпирической моделитурбулентности, оказывается неэффективным при моделированиитурбулентных течений с нестационарными крупномасштабными вихревымиструктурами, свойства которых зависят от конкретных граничных условий игеометрических характеристик течения.Хотя возможности усовершенствования полуэмпирических моделейтурбулентности еще не до конца исчерпаны, создание универсальнойполуэмпирической модели турбулентности, пригодной для расчета всех или,по крайней мере, большинства турбулентных течений представляетсянеразрешимой задачей.

Возросшие возможности вычислительной техникизаставили изменить оценку возможностей классической теориитурбулентности и стимулировали поиск и разработку новых подходов кмоделированию турбулентных течений.2.3Моделирование крупных вихрей (LES)LES можно назвать компромиссным вариантом между DNS и RANS.Отсутствие универсальной модели турбулентности, пригодной для расчетабольшинства турбулентных течений, привело к смещению акцентов висследованиях, связанных с моделированием турбулентности. Возросшиевозможности вычислительной техники стимулировали поиск и применениеболее строгих и универсальных подходов, чем RANS и менее дорогостоящих36в вычислительном плане, чем DNS. Подход LES ограничиваетсяисследованием течений в масштабах, превышающих некоторую заданнуювеличину (ширину фильтра).

Таким образом, в данном методеосуществляется решение фильтрованных по пространству уравнений НавьеСтокса и разрешается движение только крупных вихрей.Метод LES базируется на двух основных предположениях:1. Существует возможность разделить поле течения на движение крупныхи мелких вихрей. Рассчитываются крупные вихри, на которые напрямуювоздействуют граничные условия и которые несут максимум напряженийРейнольдса. Считается, что мелкомасштабная турбулентность изотропна иимеет универсальные характеристики. Потому она менее критична и лучшеподдается моделированию.2.

Существует возможность аппроксимации нелинейных взаимодействийкрупных и мелких вихрей исключительно по крупным вихрям, благодаряиспользованию подсеточных моделей. Таким образом, справедливойсчитается гипотеза о статистической независимости крупных и мелкихвихрей [101]. Спектральный интервал энергии и интервал диссипацииразнесены по частотам, что подтверждает приемлемость гипотезы остатистической независимости крупно- и мелкомасштабных вихревыхструктур.При помощи применения операции фильтрации мелкомасштабноедвижение исключается из уравнений Навье-Стокса (Рис. 4) и движение средымоделируется с использованием подсеточных моделей.37Рис. 4. Исключение мелкомасштабных пульсаций при помощи фильтрации.Среди наиболее популярных и часто используемых фильтрующихфункций можно отметить фильтры Гаусса и Фурье, а также коробочныйфильтр. При проведении расчетов на основе метода конечных объемовфильтрация осуществляется за счет интегрирования дифференциальныхуравнений по контрольным объемам разностной сетки.DNS рассматривает полный диапазон размеров вихрей.

Для LES наиболееважными являются крупные вихри, соответствующие малым волновымчислам. При этом подсеточные модели не оказывают критического влиянияна результаты в целом [102,103]. Статистика крупных вихрей обычно нечувствительна к подсеточному моделированию за исключениемпристеночной области. Представленные подсеточные модели, помимосредних характеристик потока (первые и вторые моменты),удовлетворительно предсказывают, также флуктуации интегральныххарактеристик (например, коэффициентов сопротивления и подъемной силы)и моменты более высокого порядка [104]. Крупномасштабное движениерассчитывается путем интегрирования фильтрованных уравнений НавьеСтокса, которые формально записываются в том же виде, что и уравненияРейнольдса.

С ростом числа Рейнольдса влияние подсеточногомоделирования становится более существенным[98].38По сравнению с DNS, метод LES менее требователен к вычислительнымресурсам. Поскольку LES исключает прямой расчет мелких вихрей, торазностные сетки и временные шаги могут быть намного больше (примернона порядок), чем колмогоровские масштабы длины и времени. Имеющиесяоценки показывают, что количество узлов для LES составляет около 5%количества узлов, используемого DNS. При тех же фиксированных объемахрасчетной памяти можно достичь более высоких чисел Рейнольдса, чем вDNS.

Тем не менее, основной проблемой LES (как и DNS) остаетсяопределение производных для разрешения мельчайших масштабов.В том случае, когда предельное волновое число (волновое число отсечки,cut off wave number) лежит в инерционной части спектра, разрешающиетребования LES не зависят от турбулентного числа Рейнольдса [105]. Иногдареализации LES, позволяющие разрешить все масштабы турбулентногодвижения вплоть до стенки и не использующие те или иные моделипограничного слоя (например, его двухслойную схему), называются ResolvedLES.

Такие реализации ограничиваются, в основном, расчетами сравнительнопростых канонических течений [106] (течение в канале и течение впограничном слое).Общие затраты на реализацию LES оцениваются с учетом того, что шагинтегрирования уравнения изменения количества движения во времени недолжен превышать временного масштаба наименьших разрешимыхмасштабов турбулентного движения (временной масштаб обратнопропорционален линейному масштабу и шагу сетки), а областьинтегрирования по времени ограничивается интегральным масштабом [106].При таком подходе число шагов по времени составляет N 1/3 , а стоимостьрасчета - N 4/3 .Решения на основе LES содержат больше информации по сравнению срешениями, полученными с применением RANS.

Так, например, получаютсяне только характеристики среднего течения (скорости, концентрация,39температура, давление) и распределения рейнольдсовых напряжений, нотакже и спектральные характеристики (спектры пульсаций скорости идавления), двухточечные моменты (например, пространственные ипространственно-временные корреляции пульсаций скорости и давления), атакже временные и пространственные масштабы турбулентности.

Многие изэтих характеристик имеют важное значение для инженерных приложений(например, пульсации давления и плотности – для расчета химическиреагирующих течений). Колебания давления во многих случаях являютсяпричиной усталостных повреждений элементов конструкций.

На основе LESпредставляется возможным рассчитать когерентные вихревые структуры,которые контролируют дисперсию примеси [30].Большинство приложений метода моделирования крупных вихрейограничиваются средними числами Рейнольдса. В отдельных реализацияхчисло Рейнольдса принимает значения, близкие к реальным (порядка 106),представляющим интерес для инженерной практики [106] (обтекание крыласамолета, течение в камере сгорания и др.).В диссертационной работе разработан новый метод решения уравненийНавье-Стокса для случая вязкой теплопроводной среды, использующийразложение неизвестных величин по малому параметру и вычислениекратных интегралов с применением сеток Коробова. С помощью данногометода описывается эволюция цилиндрического вихря с малой начальнойзавихренностью, а также его акустическое излучение.40Выводы к Главе 2В Главе 2 описана роль уравнений Навье-Стокса для моделированиятурбулентных течений, а также рассмотрены традиционные подходы крешению данной системы (прямое численное моделирование, решениеосредненных по Рейнольдсу уравнений, моделирование крупных вихрей).Описаны особенности различных подходов, их достоинства, недостатки играницы применимости.413 Цилиндрический вихрь в вязком теплопроводном газеВ Главе 3 приводится постановка задачи и записывается используемаядля ее решения система уравнений (нестационарная система уравненийНавье-Стокса).3.1Постановка задачиВ начальный момент завихренность имеет отличное от нуля значение 0только внутри газообразного кругового цилиндра радиуса r0 и высотой z0.Цилиндр располагается на плоскости (Рис.

5).Рис. 5. Цилиндрический вихрь на плоскости.Ось цилиндра перпендикулярна плоскости. Задача решается впредположении, что начальная завихренность 0 мала ( 0 <<1).Начальные условия:0 , r  r0 z  x, 0  0, r  r0w  x , 0   s  x , 0   h  x , 0   0.(1)42Скорость газа на плоскости равна нулю:v ( x, t ) |z 0  0.Вследствие симметрии начальных данных решение не зависит отцилиндрической координаты  , а зависит только от r , z, t .3.2Нестационарная система уравнений Навье-Стокса и еепреобразованияУравнения Навье-Стокса следуют из законов сохранения массы,импульса, энергии.

Нестационарная система уравнений Навье-Стокса вЭйлеровых переменных, в случае пренебрежения объемной вязкостью иобъемными силами имеет следующий вид: dvi Pij,dtxj d v  k  0,xk dt deT Pij  ij ().x j x j dt(2)d 21 v v  vj, Pij  2 ij   kk ij  p ij ,  ij  ( i  j ), e  CV T .dt tx j32 x j xiИспользуется разложение Гельмгольца для поля скорости напотенциальную и соленоидальную частьv ( x, t )  4s( , t )x d s  v ,    v ,   (1( , t ) d ;4x   ;;).x1 x2 x3(3)43Принимая во внимание представление (3), система уравнений НавьеСтокса в безразмерном виде записывается следующим образом:ivk vm  2 hiv3() vj  m i  si  f1i ,iijk t4xm xk x j xmx jxm ww v j s,txjh2 s  e  w  4  s  ( 1 e h  0.5s ) h  1.5 vi  h  v s  f ,j2 t 3x j xi x jx jh h  t  Pr h  (  1) s  v j x  f 3 ,j(4)w   Log  , h  LogT ,    ,     ,2, i  1, 2,3, j  1, 2,3, k  1, 2,3, m  1, 2,3.xi xiЗдесь  ijl - антисимметричный тензор,  , T , v - безразмерные значенияплотности, температуры, скорости (отнесенные к 0 , T0 , c0 , соответственно); , ,  ,c - вязкость, кинематическая вязкость, теплопроводность инизкочастотная скорость звука,  - показатель адиабаты; Pr - числоПрандтля.Функции f1i , f 2 , f3 - нелинейные члены относительно первых производныхпо координатам.

Характеристики

Список файлов диссертации

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее