Главная » Просмотр файлов » Методы оптимального синтеза измерительно-вычислительных преобразователей на основе датчиков первого и второго порядков

Методы оптимального синтеза измерительно-вычислительных преобразователей на основе датчиков первого и второго порядков (1103511)

Файл №1103511 Методы оптимального синтеза измерительно-вычислительных преобразователей на основе датчиков первого и второго порядков (Методы оптимального синтеза измерительно-вычислительных преобразователей на основе датчиков первого и второго порядков)Методы оптимального синтеза измерительно-вычислительных преобразователей на основе датчиков первого и второго порядков (1103511)2019-03-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТим. M. В. ЛОМОНОСОВАФИЗИЧЕСКИЙ ФАКУЛЬТЕТНа правах рукописиНовицкий Денис МихайловичМЕТОДЫ ОПТИМАЛЬНОГО СИНТЕЗАИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙНА ОСНОВЕ ДАТЧИКОВ ПЕРВОГО И ВТОРОГО ПОРЯДКОВСпециальность 05.13.18 — Математическое моделирование,численные методы и комплексы программАвтореферат диссертации на соискание ученой степеникандидата физико-математических наукMосква2006 г.Работа выполнена на кафедре компьютерных методов физики Физического факультета Московского Государственного Университета им. М. В. ЛомоносоваНаучный руководитель: доктор физико-математических наук,профессор Ю.П.ПытьевОфициальные оппоненты: доктор физико-математических наук,профессор Л.

Г. Деденкодоктор физико-математических наук,профессор М. И. КиселевВедущая организация: Московский Энергетический Институт»2006 г. вна заседании ДиссерЗащита состоится «тационного Совета К 501.001.17 при Московском Государственном Университете им.М.В.Ломоносова (г. Москва, Ленинские горы, МГУ, Физический факультет,ауд.).С диссертацией можно ознакомиться в библиотеке Физического факультета МГУ.Автореферат разослан «»Ученый секретарьДиссертационного Совета К 501.001.17д.ф.-м.н., профессор2006 г.П.

А. Поляков3Общая характеристика работыАктуальность темы.За последнее время значительно увеличилась роль компьютера в решении задач интерпретации данных измерений. Для оптимизации характеристик датчиков,используемых в процессе измерений, все чаще используются возможности вычислительной техники.Измерительным преобразователем (ИП), или датчиком, называется прибор, преобразующий внешнее воздействие той или иной физической природы в электрический сигнал. Измерительные преобразователи составляют основу всех измерительныхсредств.

В работе рассматриваются линейные измерительные преобразователи, которые описываются линейными дифференциальными уравнениями и называются измерительными преобразователями с сосредоточенными параметрами, когда речь идет обобыкновенных дифференциальных уравнениях, или измерительными преобразователями с распределенными параметрами в случае уравнений в частных производных.Электрический сигнал, полученный на выходе ИП, может быть оцифрован и подвергнут математической обработке в вычислительном преобразователе (ВП).

Основное преимущество использования ВП – возможность реализовать принципиально новый подход, согласно которому ИП и ВП рассматриваются вместе как единый прибор, измерительно-вычислительный преобразователь (ИВП), выполняющий функциисредства измерений с существенно более широкими возможностями, чем ИП как таковой [Пытьев, 2004]1 . Реально это означает, что качественные измерения без использования ВП, как правило, невозможны не только из-за технологических трудностей,но и в силу фундаментальных физических запретов и ограничений.Как известно [Пытьев, 1989]2 , [Пытьев, 1990]3 , характеристики измерительной компоненты ИВС, обеспечивающие наивысшее качество измерительно-вычислительнойсистемы как средства измерения, вообще говоря, не совпадают с характеристиками,обеспечивающими наивысшее качество измерительной компоненты как средства измерения.

Действительно, качество измерительной аппаратуры определяется физическими законами и процессами, лежащими в основе ее функционирования. Однакоесли критерием качества измерительной компоненты является точность интерпретации измерений на соответствующей ИВС, решающую роль начинают играть характеристики математической модели процесса измерения и оптимальный для этой модели алгоритм функционирования вычислительной компоненты, который обеспечиваетмаксимальную в своем классе точность интерпретации измерений на ИВС.

Постановказадачи наиболее точной интерпретации измерения и ее решение основываются, такимобразом, на математических моделях метода измерения и интерпретации измерения.1Пытьев Ю.П. Методы математического моделирования измерительно-вычислительных систем.– М.: 2004. – 400 с.2Пытьев Ю.П. Математические методы интерпретации эксперимента. – М.: Высш. шк., 1989.

–351 c.3Пытьев Ю.П. Методы анализа и интерпретации эксперимента, – М.: Изд-во МГУ, 1990. – 288 c.4Для достаточно широкого класса линейных и нелинейных моделей получены теоремы,гарантирующие существование и единственность таких решений, которые в теорииИВС называются редукцией измерения [Пытьев, 1989], [Пытьев, 1990]. Погрешностьредукции определяет точность интерпретации измерений на ИВС и, следовательно,качество ИВС как средства измерений – чем меньше погрешность редукции, тем вышекачество ИВС.Теория ИВС позволяет решать задачу оптимального синтеза измерительной компоненты, специально предназначенной для работы в составе ИВС и обеспечивающеймаксимальное качество ИВС как средства измерений [Пытьев, 2004].

Для проектирования измерительной аппаратуры, которую предполагается использовать в качествеизмерительной компоненты ИВС, существен ответ на вопрос о том, при каких значениях параметров погрешность интерпретации измерения на ИВС (при прочих равныхусловиях) будет минимальна, иными словами, каково предельное качество ИВС каксредства измерения. В связи с этим представляет интерес исследование зависимостивеличины погрешности редукции от параметров измерительной аппаратуры.

Например, в [Соболев]4 исследуется зависимость качества ИВС (для стохастической модели)как оптического телескопа сверхвысокого разрешения от параметров многоапертурного оптического телескопа, используемого как измерительная компонента этой ИВС; в[Задорожный, 1991]5 рассматривается ИВС на основе оптического сканирующего микроскопа. Для стохастических моделей редукции зависимость погрешности редукцииот параметров датчика исследована в работах [Волков, 2000]6 и [Пытьев, 2004]. Вопросы качества ИВС на основе датчиков с сосредоточенными параметрами для случаястохастической модели также рассмотрены в [Бондаренко, 1993]7 . В работах [Журавлев, 1987]8 , [Жохов, 1991]9 рассмотрены задачи выбора оптимальных параметровдатчика, реализующих предельные возможности ИВС как средства измерения.Среди всех рассмотренных публикаций не удалось обнаружить других подходов кпостроению теории ИВС, кроме изложенных в [Пытьев, 1990].Основной целью диссертации является изучение проблемы оптимального синтезаИВП, т.е.

нахождения таких параметров ИВП, которые гарантировали бы максимальную точность интерпретации измерений (т.е. минимальную погрешность редукции).4Соболев К.С., Чуличков А.И., Пытьев Ю.П. Многоапертурный телескоп. Сравнительный анализалгоритмов сверхразрешения. // Pattern Recognition and Image Analysis, в печати.5С.С.

Задорожный, Ю.П. Пытьев. Измерительно-вычислительная система на базе оптическогосканирующего микроскопа. // Математическое моделирование. – 1991. – т. 3, № 8. – с. 53–62.6Б.И.Волков, Ю.П.Пытьев. Измерительно-вычислительные преобразователи. // Датчики и системы. – 2000. – № 6 (15). – с. 17–23.7Бондаренко С.П., Пытьев Ю.П., Сердобольская М.Л.

О предельных возможностях измерительновычислительной системы как измерительного прибора. // Математическое моделирование. – 1993. –т. 3, № 9. – с. 43–54.8Журавлев О.В. и др. О предельных возможностях измерительных преобразователей второгопорядка. – ЖВМиМФ. – 1987. – т. 27, № 6. – с. 985 – 989.9Жохов Н.Н., Козлов А.А., Пытьев Ю.П. О предельных возможностях параметрических измерительных преобразователей второго порядка с сосредоточенными параметрами.

// Математическоемоделирование. – 1991. – т. 3, № 7. – с. 57–70.5Эта задача рассматривается для интервальной модели редукции; также проводитсясравнение полученных результатов с аналогичными для стохастической и теоретиковозможностной моделей редукции.В диссертации впервые исследуются вопросы оптимального синтеза ИВП на основе датчиков с сосредоточенными параметрами, гарантирующих максимально возможную точность интерпретации измерений, для интервальных моделей редукции. Длянескольких вариантов вычисления погрешности интервальной редукции, а именно,(а) для случая, когда важна пиковая величина ошибки, и (б) когда важно ее среднее значение за некоторый промежуток времени, в диссертации получены следующиерезультаты:1.

решены задачи оптимального синтеза ИВП на основе датчиков первого и второгопорядков;2. показано, что требования к параметрам ИП, обеспечивающие максимальнуюточность измерения на ИВП, противоречат тем, которые обеспечивают максимальную точность измерения на ИП как таковом, без использования ВП; этоутверждение совпадает с выводом, следующим из аналогичных расчетов длястохастической редукции, см. [Пытьев, 1989], [Волков, 2000].Результаты для интервальной модели сравнивались с полученными для стохастической и теоретико-возможностной моделей:1. для интервальной, стохастической и теоретико-возможностной моделей решенызадачи оптимального синтеза ИВП на основе датчика первого порядка при одномфиксированном параметре;2.

Характеристики

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов диссертации

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6553
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее