Главная » Просмотр файлов » Диссертация

Диссертация (1100338), страница 19

Файл №1100338 Диссертация (Электромагнитные геометрические зондирования с донными косами при поисках углеводородов на мелководье) 19 страницаДиссертация (1100338) страница 192019-03-13СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 19)

В декартовойсистеме координатуравнение Гельмгольца распадается на систему уравнений в частныхпроизводных относительно компонент векторного потенциала. После преобразования Ханкелязадача сводиться к решению однородных обыкновенных дифференциальных уравнений второгопорядка относительно образов функций с известными краевыми условиями на границах слоёв ив бесконечности.

Обратное преобразование Ханкеля с соответствующим дифференцированиемподынтегральных выражений даёт полное решение исходной задачи относительно E и B,которые в дальнейшем численно интегрируются и суммируются так, чтобы учесть реальнуюгеометрию питающей и приёмной линий.Инверсия выполняется методом сопряжённых градиентов с выбором шага ипредобуславливанием на основе идей, изложенных в работе (Rodi and Mackie, 2001). Ищетсярегуляризованное решения обратной задачи (Тихонов и Арсенин, 1971), минимизирующеепараметрический функционал:Ψ( ) =где− ( )− ( ) + (– модель (логарифм УЭС слоёв),) (−– стартовая модель,−)→,(4.3)– вектор данных,диагональная матрица, элементы которой содержат оценки дисперсии входных данных–,–параметр регуляризации.Параметррегуляризации уменьшается на каждой следующей итерации, стартуя снаперёд заданного значения.Задача многомерной нелинейной минимизации сводиться к задаче одномернойнелинейной минимизации, когда на каждой итерации n минимизируется функция одногопеременного вдоль заданного направления:Φ( ) ≡ Ψ(+α=Здесь α – шаг в заданном направлении,)→+α,.(4.4a)(4.4b)– вектор, определяющий направление минимизации впространстве параметров модели:=−+,(4.5a)115=−=Здесь −, гдеΨ в точке:где(– предобуславливатель,( ) = −2(4.5b),)(4.5c)- направление наискорейшего спуска функции− ( ) +2 (−) (−),(4.6)– якобиан.

Вопросы реализации линейного поиска и выбора предобуславлевателяподробно рассматриваются в той же работе (Rodi and Mackie, 2001).Результат инверсии на одной из станций приведён на рисунках 4.25 и 4.26.Рисунок 4.25. Подобранные поля на станции 167_D3 (амплитуды вверху, фазы внизу).116Рисунок 4.26. Модель, подобранная в результате 1D инверсии на станции 167_D3.Компиляция 1D моделей для всех станций вдоль профиля приведена на рисунке 4.27.117Рисунок 4.27.

Псевдо 2D модель - результат 1D инверсии (компиляция 1D моделей).118Финальная 1D модель отличается значительными латеральными изменениями отстанции к станции. Тем не менее, некоторые элементы модели могут быть выделены нанескольких пикетах.Слой повышенного УЭС в верхней части модели (глубины ~200 м) устойчивопрослеживается вдоль всего профиля. Этот слой отвечает повышению УЭС в верхней частикаротажной диаграммы и может быть ассоциирован с повышением доли грубозернистогоматериала. В пределах этого слоя выделяется область повышенного в диапазоне пикетов 17-21км, которая отвечает ранее обсуждаемой аномалии амплитуд на малых разносах. Далее будетпоказано, что этот результат устойчиво повторяется в 2D моделях.Ниже отметки 200 м модель можно условно разделить на две части, разделённыепикетом 13 км.Левая часть модели (пикеты 0-13 км) на глубинах 200-1400 м характеризуетсяотсутствием корреляции между соседними пикетами на фоне общего низкого УЭС 1-3 Омм.Ниже 1500 м УЭС повышается до 3 Ом*м, в фундаменте равняется 10-20 Омм.Правая часть модели характеризуется более выраженным слоистым строением.

Так, вдиапазоне глубин 200-1500 м на фоне низкого УЭС 1-3 Омм выделяется устойчивое повышениеУЭС до 12 Омм на глубинах 700-1200 м в диапазоне пикетов 13-24 км. Общее понижение УЭСна глубинах 1500-3000 м даёт основание выделить продуктивный слой на глубине ~1500 м вдиапазоне 19-25 км. Тем не менее такое выделение нельзя считать уверенным. Фундамент вправой части модели в целом характеризуется низкими значениями УЭС ок. 3 Омм.Можно констатировать, что полученная модель отличается мозаичностью, в которомугадываются черты слоистого строения. Наиболее яркими объектами являются повышениеУЭС в верхней части разреза (в пределах первого слоя обобщённой геоэлектрической модели),а также повышение УЭС на пикетах 9-24 км, связанное с эоцен-верхнемеловыми карбонатами.Продуктивный слой не может быть уверенно выделен в полученных 1D разрезах.4.6 2,5D прямая и обратная задачиДля 2D моделирования и инверсии использовалась программа Otze, описание которойприведено в разделе 2.3.Как было указано ранее, решение обратной задачи, реализованное в программе,основано на регуляризованном решении по Тихонову (Тихонов и Арсенин, 1970).Минимизировался обобщённый функционал:Φ=− ( )+ (++),119=−,=−,=где−,(4.6)– диагональная матрица с обратными оценками неопределённости данных, -векторизмеренных значений,регуляризации,– вектор параметров модели, - оператор прямой задачи,– параметр– матрица, горизонтальный дифференциальный оператор,вертикальный дифференциальный оператор,– разностный оператор,,константы, определяющие вклад в общий стабилизатор его отдельный частей–,-,иотвечающих, соответственно, за горизонтальную, вертикальную гладкость модели иуклонение модели от стартовой модели.= 50,Для финальных моделей были использованы= 1,= 1.

Минимизация(4.20) выполнялась итерационно методом наискорейшего спуска. Параметрразыскивался накаждой итерации так, чтобы он был не больше чем на предыдущей итерации, обеспечивалмаксимальное уменьшение невязки, не превосходящее 20%.При выполнении априорной инверсии на границах между слоями были введеныповерхности разрыва условий гладкости (соответствующие элементы матрицызаданыблизкими к 0).В процессе инверсии для вычисления нормы данных использовалась норма Хьюбера(Хьюбер, 1984), при которой уменьшение весов начиналось с квантиля 0,68.Здесь и далее под невязкой понимается величина:=∑где– вектор измеренных данных,(),(4.7)– вектор рассчитанных данных, N – длина векторов– неопределённость данных. Значениеи ,= 1 означает, что данные подобраны в среднем сточностью определяемой .

Как правило, для уменьшения невязкидо 1.0 требовалось до 10-12 итераций.4.7 Результаты 2D инверсииДля выявления главных черт строения геологической среды была выполнена 2DОккамовской изотропная инверсия. Основные параметры инверсии приведены ниже:Стартовая модель – полупространство с сопротивлением 2 Ом·м. Минимальнаямодельная ячейка 250x50 м (мощность увеличивается с глубиной)Оценка неопределённости входных данных: 5%; абсолютный шумовой порог:10В⁄Ам .120Общее количество приёмников: 48 приёмников.Расстояние между приёмниками ок. 500 м.Количество частот: 5.Относительные веса слагаемых регуляризатора:100:10:1 (горизонтальнаягладкость гладкость, вертикальная гладкость и близость к априорной моделисоотвественно)Финальная невязка: 2.4На рисунке 4.28 приведены значения отдельных частей обобщённого функционала впроцессе инверсии.Рисунок 4.28.

Изменение основных элементов обобщённого функционала в процессе Оккамовской 2Dинверсии: невязка (RMS);(HR), (V) и(DEV). Горизонтальная ось – номер итерации.имасштабированы для удобства изображения на единой вертикальной оси.По мере выполнения инверсии уменьшается невязка, и возрастает степеньнеоднородности модели. Итеративный процесс был прерван после 12-й итерации из-заневозможности дальнейшего уменьшения невязки.Оценить степень подбора полей можно, нормировав измеренные поля на синтетическиеот финальной модели (рисунки 4.29-4.33).121Рисунок 4.29.

Псевдоразрезы измеренного поля, нормированные на синтетическое поле на последней итерации Оккамовской 2D инверсии. Частота0,0625 Гц. Вверху – амплитуды, внизу – фазы.122Рисунок 4.30. Псевдоразрезы измеренного поля, нормированные на синтетическое поле на последней итерации Оккамовской 2D инверсии. Частота0,1875 Гц. Вверху – амплитуды, внизу – фазы.123Рисунок 4.31.

Псевдоразрезы измеренного поля, нормированные на синтетическое поле от последней итерации. Частота 0,3125 Гц. Вверху –амплитуды, внизу – фазы.124Рисунок 4.32. Псевдоразрезы измеренного поля, нормированные на синтетическое поле на последней итерации Оккамовской 2D инверсии. Частота0,4375 Гц. Вверху – амплитуды, внизу – фазы.125Рисунок 4.33. Псевдоразрезы измеренного поля, нормированные на синтетическое поле на последней итерации Оккамовской 2D инверсии. Частота0,5625 Гц. Вверху – амплитуды, внизу – фазы.126Из анализа приведённых псевдоразрезов следует, что в среднем подбор полей выполненне хуже 5% и 2°.

Характеристики

Список файлов диссертации

Электромагнитные геометрические зондирования с донными косами при поисках углеводородов на мелководье
Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее