Спектроскопические модели для лазерного синтеза и контроля ультрахолодных ансамблей димеров щелочных металлов (1097879), страница 33
Текст из файла (страница 33)
Rev. A. - 1994. - V.49, N3. - P.1693-1697.[110] Pazyuk E.A., Stolyarov A.V., and Pupyshev V.I. Approximate sum rule for diatomicvibronic states as a tool for the evaluation of molecular properties // Chem. Phys.Lett. - 1994. - V.228. - P.219-224.[111] Pazyuk E.A., Stolyarov A.V., and Pupyshev V.I. Improvement on Van Vleck’s formulafor diatomic non-adiabatic energy shifts // Chem. Phys. Lett.
- 1997. - V.267. - P.207214.[112] Зайцевский А.В., Пазюк Е.А., Столяров А.В. Радиационные свойства низколежащих триплетных состояний молекулы NaK // Опт. и спектр. - 1999. - Т.87. - N2.- С.243-248.[113] Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. Numerical Recipesin Fortran 77 Cambridge University Press. - 1999. - 647 p.[114] Watson J. K. G. Robust weighting in least-squares fits // J. Mol.
Spectrosc. - 2003. V.219. -P.326-328.[115] LeRoy R.J. Molecular Spectroscopy. Chemical Soc., London. Specialist PeriodicalReport. - 1973. - V.1. - 113 P.222[116] LeRoy R.J. Equilibrium Structures of Molecules. Chapter 6 J. Demaison and A.
G.Csaszar editors, Taylor and Francis. London. - 2011. - P.159-203[117] Dunham J.L. The energy levels of a rotating vibrator // Phys. Rev. A. - 1932. - V.41.- P.721-731.[118] Hulburt M. and Hirschfelder J. O. Potential energy functions for diatomic molecules// J. Chem. Phys. - 1941. - V.9. - P.61-69.[119] Huffaker J.N. Diatomic molecules as perturbed Morse oscillators. I. Energy levels //J. Chem. Phys.
- 1976. - V.64. - N8. - P.3175-3181.[120] Engelke R. Diatomic molecule vibrational potentials. Accuracy of representation //J. Chem. Phys. - 1978. - V.68. - N8. - P.3514-3521.[121] Gruebele M. Numerical potential functions for diatomic molecules. The f -potentialsof CF+ and CCl+ // Mol. Phys. - 1990. - V.69. - P.475-496.[122] Coxon J.
A. and Hajigeorgiou P. G. Born–Oppenheimer breakdown in the ground stateof carbon monoxide: A direct reduction of spectroscopic line positions to analyticalradial Hamiltonian operators // Can. J. Phys. - 1992. - V.70. - N1. - P.40-54.[123] Hajigeorgiou P.G. and LeRoy R.J. A modified Lennard-Jones oscillator model fordiatomic potential functions. // J. Chem. Phys. - 2000.
- V.112. - N9. - P.3949-3957.[124] Seto J.Y., LeRoy R.J., Verges J., and Amiot C. Direct potential fit of the X 1 Σ+g stateof Rb2 : nothing else will do // J. Chem.Phys. - 2000. - V.113. - N8. - P.3067-3076.[125] Bernath P.F. Extracting potentials from spectra // Science. - 2009. - V.324. - P.15261527.[126] Zare R.N., Schmeltekoff A.L., Harrop W.J., and Albritton D.L. A direct approach forthe reduction of diatomic spectra to molecular constants for the construction of RKRpotentials // J.
Mol. Spectrosc. - 1973. - V.46. - P.37-66.[127] Kosman W.M. and Hinze J. Inverse perturbation analysis: improving the accuracy ofpotential energy curves // J. Mol. Spectrosc. - 1975. - V.56. - P.93-103.[128] Vidal C.R., and Scheingraber H. Determination of Diatomic Molecular Constants1 +Using An Inverted Perturbation Approach.
Application to the A1 Σ+u − X Σg Systemof Mg2 . // J. Mol. Spectrosc. - 1977. - V.65. - P.46-64.[129] Pashov A., Jastrzebski W., and Kowalczyk P. Construction of potential curves fordiatomic molecular states by the IPA method // Comp. Phys. Comm. - 2000. - V.128.- N3. - P.622–634.223[130] LeRoy R.J. and Bernstein R.B. Dissociation energy and long-range potential ofdiatomic molecules from vibrational spacing of higher levels // J. Chem. Phys. 1970.
- V.52. - N8. - P.3869-3879.[131] Chibisov M.I. and Janev R.K. Asymtotic exchange interactions in ion-atom system.// Phys. Rep. - 1988. - V.166. - P.1-88.[132] Каплан И.Г. Введение в теорию межмолекулярных взаимодействий. М.: Наука,1982. - 312 с.[133] Hirschfelder J.O. and Meath W.J. The nature of intermolecular forces // Advances inChem. Phys. - 1968. - V.12. - P.3-106.[134] Buckingham A.D. Permanenet and induced molecular momenets and long-rangeintermolecular forces // Advances in Chem.
Phys. - 1968. - V.12. - P.107-142.[135] Marinescu M. and Sadeghpour H.R. Long-range potentials for two-species alkali-metalatoms // Phys. Rev. A. - 1999. - V.59. - N1. - P.390-404.[136] Knöckel H., Ruhmann S., and Tiemann E. The X 1 Σ+g ground state of Mg2 studied byFourier-transform spectroscopy // J. Chem. Phys. - 2013. - V.138. - P.094303-9.[137] Le Roy R.J. BetaFit, A computer program to fit pointwise potentials to selectedanalytic functions. University of Waterloo.
Chemical Physics Research Report CP666. -2013.[138] Bussery B., Achkar Y. and Aubert-Frecon M. Long-range molecular states dissociatingto the three or four lowest asymptotes for the ten heteronuclear diatomic alkalimolecules // Chem. Phys. - 1987. - V.116.
- P.319-338.[139] Радциг А.А. и Смирнов Б.М. Справочник по атомной и молекулярной физике.М. АТОМИЗДАТ. - 1980. - 240 С.[140] Ross A.J., Effantin C., d’Incan J., Barrow R. F. Long-range potentials for the X1 Σ+and a3 Σ+ states of the NaK molecule // Mol. Phys. - 1985. -V.56. - P.903-912.[141] Fellows C. E., Gutterres R. F., Campos A. P. C.,Vergès J., Amiot C. The RbCs X1 Σ+Ground Electronic State: New Spectroscopic Study // J. Mol. Spectrosc.
- 1999. V.197.- N.1. - P.19-27.[142] Docenko O., Tamanis M., Ferber R., Pashov A., Knöckel H., and Tiemann E.Spectroscopic studies of NaCs for the ground state asymptote of Na plus Cs pairs// Eur. Phys. J. D. - 2004. - V.31. - N2. - P.205-211.[143] Docenko O., Tamanis M., Ferber R., Pashov A., Knöckel H., Tiemann E. Potential ofthe ground state of NaRb // Phys. Rev. A.
- 2004. - V.69. - P.042503-7.224[144] Docenko O., Nikolayeva O., Tamanis M., Ferber R., Pazyuk E.A., Stolyarov A.V.Experimental studies of the NaRb ground state potential up to v 00 = 76 level. // Phys.Rev. A - 2002. - V.66. - P.052508-8.[145] Ferber R., Klincare I., Nikolayeva O., Tamanis M., Knöckel H., Tiemann E., PashovA. The ground electronic state of KCs studied by Fourier transform spectroscopy //J. Chem. Phys.
- 2008. - V.128. - P.244316-9.[146] Coxon J. A., Hajigeorgiou P. G. The ground X1 Σ+g electronic state of the cesium dimer:Application of a direct potential fitting procedure // J. Chem. Phys. - 2010. - V.132.- P.094105-17.[147] Pashov A., Docenko O., Tamanis M., Ferber R., Knöckel H., Tiemann E. Coupling ofthe X 1 Σ+ and a3 Σ+ states of KRb // Phys. Rev.
A. - 2007. - V.76. - P.022511-10.[148] Zaitsevskii A., Adamson S. O., Pazyuk E. A., Stolyarov A. V., Nikolayeva O., DocenkoO., Klincare I., Auzinsh M., Tamanis M., Ferber R., and Cimiraglia R. Energy andradiative properties of the low-lying NaRb states // Phys. Rev. A. - 2001. - V.63. P.052504-10.[149] Docenko O., Tamanis M., Ferber R., Pashov A., Knöckel H., Tiemann E. The D1 Πstate of the NaRb molecule // Eur. Phys. J.
D. - 2005. - V.36. - N1. - P.49-55.[150] Jastrzebski W., Kortyka P., Kowalczyk P., Docenko O., Tamanis M., Ferber R., PashovA., Knöckel H., Tiemann E. Accurate characterisation of the C(3)1 Σ+ state of theNaRb molecule // Eur. Phys. J. D. - 2005. - V.36. - N1. - P. 57-65.[151] Birzniece I., Nikolayeva O., Tamanis M., Ferber R. B(1)1 Π state of KCs: Highresolution spectroscopy and description of low-lying energy levels // J. Chem. Phys. 2012. - V.136. - P.064304-9.[152] Szczepkowski J. , Grochola A., Jastrzebski W., Kowalczyk P. On the 41 Σ+ state of theKCs molecule // J.
Mol. Spectrosc. - 2012. -V.276. - P.19-21.[153] Urban M., Sadlej A.J. Electronic structure and electric properties of the alkali metaldimers // J. Chem. Phys. - 1995. - V.103. - P.9692-9704.[154] Werner H.-J., Knowles P.J. A second order multiconfiguration SCF procedure withoptimum convergance // J. Chem. Phys. - 1985. - V.82. - P.5053-5063.[155] Knowles P.J., Werner H.-J.Internally contracted multiconfiguration-referenceconfiguration interaction calculations for excited states // Theor. Chim. Acta. - 1992.- V.84. - P.95-103.225[156] Szalay P.G., Bartlett R.J. Approximately extensive modifications of the multireferenceconfiguration interaction method: A theoretical and practical analysis // J.
Chem.Phys. - 1995. - V.103. - P.3600-3613.[157] Edvardsson D. , Lunell S., Marian C.M. Calculation of potential energy curves for Rb2including relativistic effects // Mol. Phys. - 2003. - V.101. - N15. - P.2381-02389.[158] Kotochigova S., Julienne P. S., Tiesinga E. Ab initio calculation of the KRb dipolemoments // Phys. Rev. A. - 2003.
- V.68. - P.022501-7.[159] Kotochigova S., Tiesinga E. Ab initio relativistic calculation of the RbCs molecule //J. Chem. Phys. - 2005. - V.123. - P.174304-7.[160] Kotochigova S., Tiesinga E., Julienne P.S. Relativistic ab initio treatment of thesecond-order spin-orbit splitting of the a3 Σ+u potential of rubidium and cesium dimers// Phys. Rev. A. - 2000. - V.63.
- P.012517-4.[161] Lim I. S. , Lee W. C., Lee Y.S., Jeung G.-H. Theoretical investigation of RbCs viatwo-component spin-orbit pseudopotentials: Spectroscopic constants and permanentdipole moment functions // J. Chem. Phys. - 2006. - V.124. - P.234307-12.[162] Aymar M., Dulieu O. Calculation of accurate permanent dipole moments of the lowest1,3 +Σ states of heteronuclear alkali dimers using extended basis sets // J. Chem. Phys.- 2005. - V.122. - P.204302-9.[163] Korek M., Allouche A. R., Fakhreddine K., Chaalan A. Theoretical study of theelectronic structure of LiCs, NaCs, and KCs molecules // Can.
J. Phys. - 2000. - V.78.- P.977-988.[164] Korek M., Moghrabi Y. A., Allouche A. R. Theoretical calculation of the excited statesof the KCs molecule including the spin-orbit interaction // J. Chem. Phys. - 2006. V.124. - P.094309-10.[165] Korek M., Allouche A.R., Kobeissi M., Chaalan A., Dagher M., Fakherddin K., andAubert-Frecon M. Theoretical study of the electronic structure of the LiRb and NaRbmolecules. // Chem. Phys.