Плазменно и термически стимулированное осаждение алмазных пленок многомерные модели химических реакторов (1097823), страница 69
Текст из файла (страница 69)
Lett. 1993. v.62. p.2329-2331.22. Chen K.-H., Chuang M.-C., Penney C.M., Banholzer W.F. Temperature and concentrationdistribution of H2 and H atoms in hot‐filament chemical‐vapor deposition of diamond // J. Appl.Phys. 1992 v.71. p.1485-149323. Langmuir I., Mackay G.M.J. The dissociation of hydrogen into atoms.
Part I. Experimental. // J.Am. Chem. Soc. 1914. v.36. p.1708-1722.24. Meier U., Kohse-Hoinghaus K., Schafer L., Klages C.-P. // Appl. Opt. 1990. v.29. p.4993.25. Schafer L., Klages C.-P., Meier U., Kohse-Hoinghaus K. Atomic hydrogen concentration profilesat filaments used for CVD of diamond // Appl. Phys. Lett.
1991. v.58. p.571-573.26. Ashfold M.N.R., May P.W., Petherbridge J.R., Rosser K.N., Smith J.A., Mankelevich Yu.A.,Suetin N.V. Unraveling aspects of the gas phase chemistry involved in diamond chemical vapourdeposition // Phys. Chem. Chem. Phys. 2001. v.3. p.3471-3485.27. Connell L.L., Fleming J.W., Chu H.-N., Vesteck D. J., Jr., Jensen E., Butler J. E. Spatially resolvedatomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical‐vapordeposition of diamond // J. Appl. Phys.
1995. v.78. p.3622-3634.28. Mankelevich Yu.A., Rakhimov A.T., Suetin N.V. Two-dimensional simulation of a hot-filamentCVD reactor // Diamond and Related Materials. 1996. v.5. p.888-894.29. Mankelevich Yu.A., Rakhimov A.T., Suetin N.V. Three-dimensional simulation of a HFCVDreactor // Diamond Relat. Mater. 1998. v.7. p.1133-1137.30. Mankelevich Yu.A., Suetin N.V., Ashfold M.N.R., Smith J.A., Cameron E. Experimental dataversus 3-D model calculations of HFCVD processes: Correlations and discrepancies // Diamond andRelated Materials. 2001.
v.10. p.364-369.31. Olivas-Martınez M., Perez-Tello M., Cabanillas-Lopez R., Contreras-Lopez O., Soto-Herrera G.,Castill´on-Barraza F. A computational model for the hot-filament CVD process to produce diamondfilms // Modelling Simul. Mater. Sci. Eng. 2007. v.15. p.237–26132. Wahl E.H., Owano T.G., Kruger C.H., Zalicki P., Ma Y., Zare R.N. Measurement of absolute CH3concentration in a hot-filament reactor using cavity ring-down spectroscopy // Diamond Relat. Mater.1996.
v.5. p.373-377.33. Goodwin D.G., Butler J.E. // in Handbook of Industrial Diamonds and Diamond Films (eds. M.A.Prelas, G. Popovici and L.K. Bigelow), Marcel Dekker, New York, 1998.34. May P.W. Diamond thin films: a 21st-century material // Phil. Trans. R. Soc. Lond. 2000. A 358.p.473-495.35.
Comerford D.W., Smith J.A., Ashfold M.N.R., Mankelevich Yu.A. On the mechanism of H atomproduction in hot filament activated H2 and CH4/H2 gas mixtures // J. Chem. Phys. 2009. v.131.044326.36. Umemoto H., Funae T., Mankelevich Yu.A. Activation and Decomposition of N2 on HeatedTungsten Filament Surfaces // J. Phys. Chem. C, 2011. v.115. p.6748–6756.37.
Smith J.A., Cameron E., Ashfold M.N.R., Mankelevich Yu.A., Suetin N.V. On the mechanism ofCH3 radical formation in hot filament activated CH4/H2 and C2H2/H2 gas mixtures // Diamond andRelated Materials. 2001. v.10. p.358-363.29938. Manfredotti C., Fizzotti F., Giudice A.L., Mucera G., Polesello P., Vittone E., Mankelevich Yu.A.,Suetin N.V. Growth and characterization of CVD diamond wires for X-ray detection // Diamond andRelated Materials. 1997.
v.6. p.1051-1056.39. Mankelevich Yu.A., Rakhimov A.T., Suetin N.V. Three-dimensional reactive flow simulations offilament-assisted diamond deposition // Proc. of the Fifth Internat. Sympos. On Diamond Materials,Editors: J.L. Davidson, W.D. Brown, A. Gicquel, B.V. Spitsyn, J.C. Angus.
The ElectrochemicalSociety, Paris, France. 1997. v. 97-32, p.161-170.40. Mankelevich Yu.A., Suetin N.V. Three-dimensional distributions of methyl density in a hotfilament CVD reactor. Comparison with cavity ring-down spectroscopy measurements // Proceedingsof SPIE, Lasers in Synthesis, Characterization, and Processing of Diamond, Editor(s): Konov V.I.,Ralchenko V.G. 1998. v.3484. p.43-49.41. Mankelevich Yu.A., Suetin N.V., Smith J.A., Ashfold M.N.R. Investigations of the gas phasechemistry in a hot filament CVD reactor operating with CH4/N2/H2 and CH4/NH3/H2 gas mixtures //Diamond Relat.
Materials. 2002. v.11. p.567-572.42. Smith J.A., Wills J.B., Moores H.S., Orr-Ewing A.J., Ashfold M.N.R., Mankelevich Yu.A., SuetinN.V. Effects of NH3 and N2 additions to hot filament activated CH4/H2 gas mixtures // J. Appl. Phys.2002.
v.92. p.672-681.43. Wills J.B., Ashfold M.N.R., Orr-Ewing A.J., Mankelevich Yu.A., Suetin N.V. Number densitiesand temperatures of acetylene in hot filament and arc-jet activated CH4/H2 gas mixtures measuredusing diode laser cavity ring-down spectroscopy // Diamond and Related Materials. 2003. v.12.p.1346-1356.44.
Comerford D.W., Cheesman A., Carpenter T.P.F., Davies D.M.E., Fox N.A., Sage R.S., SmithJ.A., Ashfold M.N.R., Mankelevich Yu.A. Experimental and Modeling Studies of B Atom NumberDensity Distributions in Hot Filament Activated B2H6/H2 and B2H6/CH4/H2 Gas Mixtures // J. Phys.Chem. A. 2006. v.110. p.2868-2875.45. May P.W., Ashfold M. N. R., Mankelevich Yu.A. The mechanism for ultrananocrystallinediamond growth: experiment and theoretical studies // Diamond Electronics - Fundamentals toApplications, Boston, USA, 2006, Mater.
Res. Soc. Proc. 2007. v.956. p.0956-J07-04.46. May P.W., Smith J.A., Mankelevich Yu.A. Deposition of NCD films using hot filament CVD andAr/CH4/H2 gas mixtures // Diamond and Related Mater. 2006. v.15. p.345-352.47. May P.W., Mankelevich Yu.A. Experiment and modeling of the deposition of ultrananocrystallinediamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: ageneralized mechanism for ultrananocrystalline diamond growth // J.
Appl. Phys. 2006. v.100.024301.48. May P.W., Ashfold M.N.R., Mankelevich Yu.A. Microcrystalline, nanocrystalline, andultrananocrystalline diamond CVD: Experiment and modelling of the factors controlling growth rate,nucleation, and crystal size // J. Appl. Phys. 2007. v.101. 053115.49. Comerford D.W., D'Haenens-Johansson U.F.S., Smith J.A., Ashfold M.N.R., Mankelevich Yu.A.Filament seasoning and its effect on the chemistry prevailing in hot filament activated gas mixturesused in diamond chemical vapour deposition // Thin Solid Films.
2008. v.516. p.521–525.50. May P.W, Mankelevich Yu.A. From Ultrananocrystalline Diamond to Single Crystal DiamondGrowth in Hot Filament and Microwave PECVD Reactors: a Unified Model for Growth Rates andGrain Sizes // J. Phys. Chem. C. 2008. v.112. p.12432–12441.51. Mankelevich Yu.A., Ashfold M.N.R., Comerford D.W., J.Ma, Richley J.C. Boron doping:B/H/C/O gas phase chemistry; H atom density dependences on pressure and wire temperature; puzzlesregarding the gas-surface mechanism // Thin Solid Films. 2011. v.519.
p.4421-4425.52. Qiuping W., Ashfold M.N.R., Mankelevich Yu.A., Yu Z.M., Liu P.Z., Ma L. Diamond growth onWC-Co substrates by hot filament chemical vapor deposition: Effect of filament-substrate separation //Diamond and Related Mater. 2011. v.20. p.641-650.53. Ohtake N., Yoshikawa M. Diamond film preparation by arc discharge plasma jet chemical vapordeposition in the methane atmosphere // J. Electrochemic. Soc. 1990. v.137. p.717-722.54.
Райзер Ю. П. Физика газового разряда / Москва: Наука. 1987. 591 с.30055. Westhoff R., Szekely J. A model of fluid, heat flow, and electromagnetic phenomena in anontransferred arc plasma torch // J. Appl. Phys. 1991. v.70. p.3455-3466.56. Goodwin D.G. Simulations of high rate diamond synthesis: Methyl as growth species // Appl.Phys. Lett. 1991. v.59.
p.277-279.57. Stalder K.R., Sharpless R.L. Plasma properties of a hydrocarbon arc-jet used in the plasmadeposition of diamond thin films // J. Appl. Phys. 1990. v.68. p.6187-6190.58. Zhang Y. F., Dunn-Rankin D., Taborek P. Potential role of atomic carbon in diamond deposition //J. Appl. Phys. 1993 v.74. p.6941-6947.59. Coltrin M.E., Dandy D.S. Analysis of diamond growth in subatmospheric dc plasma‐gun reactors// J. Appl. Phys. 1993. v.74.
p.5803-5820.60. Yu B.W., Girshik S.L. Atomic carbon vapor as a diamond growth precursor in thermal plasmas //J. Appl. Phys. 1994. v.75. p.3914-3923.61. Reeve S.W., Weimer W.A., Cerio F.M. Gas phase chemistry in a direct current plasma jet diamondreactor // J. Appl. Phys. 1993. v.74. p.7521-7530.62.
Reeve S.W., Weimer W.A. Optimizing the gas phase chemistry in a d.c. arcjet diamond chemicalvapor deposition reactor // Thin Solid Films. 1994. v.253. p.103-108.63. Meulenbroeks R.F.G., Engeln R., Beurskens M., Paffen R.M.J., M.C.M. van de Sanden, J.A.M.van der Mullen, Schram D.C. The argon-hydrogen expanding plasma: model and experiments //Plasma Sources Sci. Techn. 1995. v.4. p.74-85.64.
M.C.M. van de Sanden, M.F. van Hest, A. de Graaf, Smets A.H.M., Letourneur K.G.Y., BoogaartsM.G.H., Schram D.C. Plasma chemistry of an expanding Ar/C2H2 plasma used for fast deposition ofa-C:H // Diamond and Related Materials. 1999. v.8. p.677–681.65. Engeln R., Letourneur K.G.Y., Boogaarts M.G.H., M.C.M. van de Sanden, Schram D.C. Detectionof CH in an expanding argon/acetylene plasma using cavity ring down absorption spectroscopy //Chemical Physics Letters. 1999. v.310. p.405–410.66. Mazouffre S., Boogaarts M., Bakker I.S.J., Vankan P., Engeln R., Schram D.C.