Плазменно и термически стимулированное осаждение алмазных пленок многомерные модели химических реакторов (1097823), страница 70
Текст из файла (страница 70)
Transport ofground-state hydrogen atoms in a plasma expansion // Phys. Rev. E. 2001. v.64. 016411.67. Benedikt J. Plasma-chemical reactions: low pressure acetylene plasmas // J. Phys. D: Appl. Phys.2010. v.43. 043001.68. Yamaguchi H., Ishii M., Uematsu K., Morimoto S. Characterization of a DC Arcjet Plasma forDiamond Growth by Measurement of Spatial Distributions of Optical Emission // Jap. J. Appl.
Phys.1996. v.35. p.2306-2313.69. Sakiyama S., Fukumasa O., Murakami T., Kobayashi T. Spectroscopic Measurement of DCPlasma Jet in Diamond Synthesis // Jap. J. Appl. Phys. 1997. v.36. p.5003-5006.70. Zhao M., Owano T.G., Kruger C.H. Optical diagnostics of an atmospheric pressure diamonddepositing DC plasma reactor // Diamond Relat. Mater. 2001. v.10. p.1565-68.71. Baldwin S.K.J., Zhao M., Owano T.G., Kruger C.H. Enhanced deposition rate of diamond inatmospheric pressure plasma CVD: Effects of a secondary discharge // Diamond Relat. Mater.
1997.v.6. p.202-206.72. Pereverzev V.G., Pozharov A.S., Konov V.I., Ralchenko V.G, Metev S., Sepold G. Improved DCarc-jet diamond deposition with a secondary downstream discharge // Diamond Relat. Mater. 2000.v.9. p.373-377.73. Luque J., Juchmann W., Jeffries J.B. Spatial density distributions of C2, C3, and CH radicals bylaser-induced fluorescence in a diamond depositing dc-arcjet // J. Appl. Phys. 1997. v.82. p.2072-2081.74. Juchmann W., Luque J., Wolfrum J., Jeffries J.B. Absolute concentrations, temperature, andvelocity measurements in a diamond depositing dc-arcjet reactor // Diamond Relat. Mater. 1998. v.7.p.165-169.75.
Juchmann W., Luque J., Jeffries J.B. Flow characterization of a diamond-depositing dc arcjet bylaser-induced fluorescence // Appl. Opt. 2000. v.39. p.3704-3711.76. Juchmann W., Luque J., Wolfrum J., Jeffries J.B. Atomic hydrogen concentration in a diamonddepositing dc arcjet determined by calorimetry // J. Appl. Phys. 1997.
v.81. p.8052-8056.30177. Luque J., Juchmann W., Jeffries J.B. Excited state density distributions of H, C, C2, and CH byspatially resolved optical emission in a diamond depositing dc-arcjet reactor // J. Vac. Sci. Technol. A.1998. v.16. p.397-408.78. Juchmann W., Luque J., Jeffries J.B. Two-photon laser-induced fluorescence of atomic hydrogenin a diamond-depositing dc arcjet // Appl. Opt. 2005. v.44. p.6644-6652.79. Mankelevich Yu.A., Ashfold M.N.R., Orr-Ewing A.J. Measurement and modelling of Ar/H2/CH4arc jet discharge CVD reactors II: modelling of the spatial dependence of expanded plasma parametersand species number densities // J. Appl. Phys.
2007. v.102. 063310.80. Rennick C.J., Ma J., Henney J.J., Wills J.B., Ashfold M.N.R., Orr-Ewing A.J., Mankelevich Yu.A.Measurement and modelling of Ar/H2/CH4 arc jet discharge CVD reactors I: inter-comparison ofderived spatial variations of H atom, C2 and CH radical densities // J. Appl. Phys.
2007. v.102. 063309.81. Mankelevich Yu.A., Suetin N.V., Ashfold M.N.R., Boxford W.E., Orr-Ewing A.J., Smith J.A.,Wills J.B.. Chemical kinetics in carbon depositing dc-arc jet CVD reactors // Diamond and RelatedMaterials. 2003. v.12. p.383-390.82. Rennick C.J., Smith A.G., Smith J.A., Wills J.B., Orr-Ewing A.J., Ashfold M.N.R., MankelevichYu.A., Suetin N.V. Improved characterisation of C2 and CH radical number density distributions in aDC arc jet used for diamond CVD // Diam. Relat. Mater.
2004. v.13. p.561-568.83. Rennick C.J., Engeln R., Smith J.A., Orr-Ewing A.J., Ashfold M.N.R., Mankelevich Yu.A.Measurement and modeling of a diamond deposition reactor: Hydrogen atom and electron numberdensities in an Ar/H2 arc jet discharge // J. Appl. Phys. 2005. v.97. p.113306-113320.84.
Rennick C.J., Ma J., Ashfold M.N.R., Orr-Ewing A.J., Mankelevich Yu.A. Spatial profiling ofH(n=2) atom number densities in a DC arc jet reactor // Plasma Sources Sci. Technology. 2006. v.15.p.432-440.85. Lee J.-K., Eun K.Y., Baik Y-J., Cheon H.J., Rhyu J.W., Shin T.J., Park J-W. The large areadeposition of diamond by the multi-cathode direct current plasma assisted chemical vapor deposition(DC PACVD) method // Diamond and Related Materials. 2002. v.11. р.463-466.86.
Menningen K.L., Childs M.A., Toyoda H., Ueda Y., Anderson L.W., Lawler J.E. Absolute radicaldensity measurements in a CH4-H2 d.c. discharge // Diamond and Relat. Mater. 1994. v.3. p.422-425.87. Lee H-J., Jeon H., Lee W-S. Ultrananocrystalline diamond film deposition by direct-currentplasma assisted chemical vapor deposition using hydrogen-rich precursor gas in the absence of thepositive column // J.
Appl. Phys. 2011. v.109. 023303.88. Манкелевич Ю. А., Рахимов А. Т., Суетин Н. В. Моделирование процессов осажденияалмазных пленок в реакторе с активацией смеси разрядом постоянного тока. // Физика плазмы.1995. т. 21. с. 921-927.89. Filippov A.V., Mankelevich Yu.A., Pal A.F., Rakhimov A.T., Serov A.O., Suetin N.V..Spectroscopy, actinometry and simulation of a DC discharge in CO/H2 gas mixtures // Proc. of SPIE,Select. Res.
Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures, Ed. V.N.Ochkin. 2002. v.4460. p.285-295.90. Mankelevich Yu.A., Rakhimov A.T., Suetin N.V. Two-dimensional model of a reactive gas flowin a diamond film CVD reactor // Diam. Relat.
Mater. 1995. v.4. p.1065-1068.91. Mankelevich Yu.A., Rakhimov A.T., Suetin N.V., Kostyuk S.V. Diamond growth enhancement indc discharge CVD reactors. Effects of noble gas addition and pulsed mode application // DiamondRelat. Materials. 1996. v.5. p.964-967.92. Mankelevich Yu.A., Rakhimov A.T., Suetin N.V., Коstyuk S.V. Diamond deposition in plasmaactivated CVD reactors. Two-dimensional modeling // Journ. of Chemical Vapor Deposition.Technomic Publishing Co. Inc. 1996. v.5. p.74-8293. Mankelevich Yu.A., Rakhimov A.T., Suetin N.V., Aparin Y.J. 2D model DC discharge reactor fordiamond deposition // Ceramics International.
1998. v.24. p.255-25794. Коstiuk S.V., Mankelevich Yu.A., Rakhimov A.T., Suetin N.V. Reactive mixture activation by dcand mw discharges. Two-dimensional simulation // Proc. of Physics and Technology Institute. 2000.v.16. pp. 38-47.95. Gicquel A., Hassouni K., Farhat S., Breton Y., Scott C.D., Lefebvre M., Pealat M. Spectroscopic302analysis and chemical kinetics modeling of a diamond deposition plasma reactor // Diam. Rel.
Mater.1994. v.3. p.581-586.96. Hassouni K., Gicquel A., Capitelli M., Loureiro J. Chemical kinetics and energy transfer inmoderate pressure H2 plasmas used in diamond MPACVD processes // Plasma Sources Sci. Technol.1999. v.8. p.494-512.97. Лебедев Ю.А., Эпштейн И.Л. Ионный состав неравновесной плазмы в смеси водорода сметаном // Теплофизика высоких температур. 1998. т.36.
c.534-540.98. Lombardi G., Hassouni K., Stancu G.-D., Mechold L., Ropcke J., Gicquel A. Study of an H2/CH4moderate pressure microwave plasma used for diamond deposition: modelling and IR tuneable diodelaser diagnostic // Plasma Sources Sci. Technol.
2005. v.14. p.440–450.99. McMaster M.C., Hsu W.L., Coltrin M.E., Dandy D.S., Fox C. Dependence of the gas compositionin a microwave plasma-assisted diamond CVD reactor on the inlet carbon source: CH4 versus C2H2 //Diam. Relat. Materials. 1995. v.4. p.1000–1008.100. Lombardi G., Hassouni K., Benedic F., Mohasseb F., Ropcke J., Gicquel A. Spectroscopicdiagnostics and modeling of Ar/H2/CH4 microwave discharges used for nanocrystalline diamonddeposition // J. Appl. Phys.
2004. v.96. p.6739-6751.101. Lombardi G., Hassouni K., Stancu G.-D., Mechold L., Ropcke J., Gicquel A. Modeling ofmicrowave discharges of H2 admixed with CH4 for diamond deposition // J. Appl. Phys. 2005. v.98.053303.102. Celii F.G., White D., Purdes A.J. Effect of residence time on microwave plasma chemical vapordeposition of diamond // J. Appl. Phys. 1991. v.70. p.5636-5646.103. Hyman E., Tsang K., Lottati I., Drobot A., Lane B., Post R., Sawin H. Plasma enhanced chemicalvapor deposition modeling // Surface and Coatings Technol.
1991. v.49. p.387-393.104. Kostiuk S.V., Mankelevich Yu.A., Rakhimov A.T., Suetin N.V. Two-dimensional simulation ofdiamond deposition processes in microwave discharge reactors // Proc. 5th Int. Symp. on DiamondMaterials, Eds. J.L. Davidson, W.D. Brown, A. Gicquel, B.V. Spitsyn, J.C. Angus. The Electrochem.Soc., Paris, France. 1997. v. 97-32. p.152-160.105. Hassouni K., Grotjohn T.A., Gicquel A. Self-consistent microwave field and plasma dischargesimulations for a moderate pressure hydrogen discharge reactor // J.
Appl. Phys. 1999. v.86. p.134151.106. Gorbachev A.M., Koldanov V.A., Vikharev A.L. Numerical modeling of a microwave plasmaCVD reactor // Diamond Relat. Materials. 2001. v.10. p.342-346.107. Yamada H., Chayahara A., Mokuno Y. Simplified description of microwave plasma discharge forchemical vapor deposition of diamond // J. Appl. Phys. 2007. v.101.
063302.108. Yamada H., Chayahara A., Mokuno Y., Shikata S. Model of reactive microwave plasmadischarge for growth of single-crystal diamond // Jap. J. Appl. Phys. 2011. v.50. 01AB02.109. Yamada H. Numerical simulations to study growth of single-crystal diamond by using mwplasma CVD with Reactive (H, C, N) species // Jap. J. Appl. Phys.
2012. v.51. 090105.110. Лебедев Ю.А. Параметры электронной компоненты метансодержащей водородной СВЧплазмы в резонаторе // Теплофизика высоких температур.1995. т.33. с.850-854.111. Mankelevich Yu.A., Ashfold M.N.R., Ma J., Plasma-chemical processes in microwave plasmaenhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures // J. Appl. Phys.2008. v.104.
113304.112. Ma J., Richley J.C., Ashfold M.N.R, Mankelevich Yu.A. Probing the plasma chemistry in amicrowave reactor used for diamond chemical vapor deposition by cavity ring down spectroscopy // J.Appl. Phys., 2008. v.104. 103305.113. Ma J., Ashfold M.N.R., Mankelevich Yu.A. Validating optical emission spectroscopy as adiagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition //J. Appl. Phys.