Главная » Просмотр файлов » Ильин В.А., Позняк Э.Г. Аналитическая геометрия (7-е изд., 2004)

Ильин В.А., Позняк Э.Г. Аналитическая геометрия (7-е изд., 2004) (1095460), страница 11

Файл №1095460 Ильин В.А., Позняк Э.Г. Аналитическая геометрия (7-е изд., 2004) (Ильин В.А., Позняк Э.Г. Аналитическая геометрия (7-е изд., 2004)) 11 страницаИльин В.А., Позняк Э.Г. Аналитическая геометрия (7-е изд., 2004) (1095460) страница 112018-09-24СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 11)

) Векторы, входвыие в каждую из указанных трех пар, не ко.глинеарнн. а потону каждая из указанных трех пар определяет некоторую плоскость. Так как из трех чисел Л., )г, — 1 одно заведомо отлично от нуля, то последнее равенство доказывает линейную зависимость векторов а, Ь и с. Достаточность доказана. Попутно доказаны следующие у т в е р ж д е н и я: Следствие г. Каковы бы ни были неколлинеарные векторы а и Ь для любого вектора с, лежаи)его и одной плоскости с гекторами а и Ь, наидутся такие ееи(естеенные числа ) и )л, что справедливо ра- венство ь 1! ЛИИЕИНЫЕ ОПЕРЛНИИ ИЛД ВЕКТОРЛМИ зз Убедимся в том, что вектор д = 00 равен сумме трех векторов ОА, ОВ и ОС, т.е. д=ОА+ОВ+ОС. (2.

14) В самом деле, из правила параллелограмма сложения векторов и из параллелограмма ОСОЕ (рис. 2.11) вытекает, что д = ОС + ОЕ, а из параллелограмма ОВЕА вытекает, что ОЕ = ОА + ОВ . Тем самым равенство (2.14) установлено. Так как вектор ОА коллинеарен ненулевому вектору а (с которым он лежит на одной прямой), то в силу теоремы 2.1 найдется вещественное число ) такое, что ОА =) а. (2.15) Из аналогичных соображений вытекает существование вещественных чисел )т и т таких, что ОВ =рЬ, ОС =ус.

(2.1 6) Вставляя (2.15) и (2.16) в (2.14), будем иметь д = л.а+)ЛЬ+чс. Равенство (2. ! 7) можно переписать в виде ).а + )ЛЬ + те + (-!)д = О. (2.17) (2.18) д = Ха+ )ЛЬ+чс. (2.17) 7. Понятие базиса. Аффинные координаты. Определение 1. Говорят, что три линейно независимых вектора а, Ь и с образуют в пространстве ба з и с, если любой вектор д может быть представлен в виде некоторой линеиной комбинации векторов а, Ь и с, т.е. если для любого вектора д найдутся такие вещественные числа л., )х и т, что справедливо равенство (2.17). Аналогично определяется базис на некоторой плоскости и. Определение 2.

Говорят, что два лежащих в плоскости и линейно независимых вектора а и Ь образуют на этой плоскости б а з и с, если любой лежащий в плоскости и вектор с может быть представлен в виде некоторой линейной комбинации векторов а и Ь, т.е. если Так как из четырех чисел )ь р, т, — ! одно заведомо отлично от нуля, то равенство (2.18) доказывает линейную зависимость векторов а, Ь, с и д. Теорема доказана.

Попутно доказано следующее у т в е р ж де н и е: Следствие 1. Каковы бы ни были некомплачарные векторы а, Ь и с, для любого вектора д наидутся такие вещественные числа Х, р и т, что справедливо равенство Векторнля ллгеврл 1ГЛ 2 для любого лежащего в плоскости я вектора с найдутся такие вещественные числа ) и р, что справедливо равенство (2.13).

Справедливы следующие фундаментальные утверждения: 1) любая тройка некомпланарньтх векторов а, Ь и с образует базис в пространстве; 2) любая пара лежаи(ик в данной плоскости неколлинеарных векторов а и Ь образует базис на этой плоскости. Для доказательства первого из этих утверждений достаточно заметить, что, каковы бы ни были три некомпланарных вектора а, Ь и с, они линейно независимы (в силу следствия 2 из теоремы 2.5), и для любого вектора с( найдутся вещественные числа )ч р и т такие, что справедливо равенство (2.17) (в силу следствия из теоремы 2.6). Утверждение 2) доказывается аналогично (с помощью следствия 1 из теоремы 2.4 и следствия 1 из теоремы 2.5). В дальнейшем для определенности будем рассматривать базис в пространстве.

Итак, пусть а, Ь, с — произвольный базис в пространстве, т.е. произвольная тройка некомпланарных векторов. Тогда (по определению базиса) для любого вектора д найдутся такие вещественные числа )ь, р и у, что будет справедливо равенство б = ).а + рЬ+ ис. (2.17) Принято называть равенство (2.17) разложением вектора б по базису а, Ь, с, а числа )ь, р и и — координатами вектора С( относительно базиса а, Ь, с, Докажем, что каждьгй вектор с( может быть е д и н с т в е нн ьс м с и о с о б о м разложен по базису а, Ь, с, или (что то же самое) координаты каждого вектора с( относительно базиса а, Ь, с о и р е д еляются однозначно. Допустим, что для некоторого вектора б, наряду с разложением (2.17), справедливо еще и другое разложение по тому же самому базису д = Х'а ж р'Ь + у'с. (2.

19) Почленное вычитание равенств (2.17) и (2.19) приводит к соотношению ') (). — Х')а ч- (р — р') Ь ж (ч — тг)с = О. (2.20) В силу линейной независимости базисных векторов а, Ь, с соотношение (2.20) приводит к равенствам Х вЂ” 2.'=О, р — р'=О, и — о'=О, или )с = )ь', р = р', т)= у'.

Единственность разложения по базису доказана. ') Возможность почленного вычитания равенств (2 17) и (2 19) и произволимои группировки членов вытекают из своиств линеинык операций нал векторами (см. и. 2). 55 ЛИНЕИНЫЕ ОПЕРЛПИИ НЛД ВЕКТОРЛМИ Основное значение базиса состоит в том, что линейные операции над векторами при задании базиса становятся обычными линейными операциями над числами — координатами этих векторов. Именно справедливо следующее утверждение. Теорема 2.7. При сложении двух векторов д, и с(а их координаты (относительно любого базиса а, Ь, с) складываются.

При умножении вектора д, на любое число а все его координаты умножаются на это число. Доказательство. Пусть д,=),а+)),Ь+т,с, с)а=)аа+ + ))аЬ+ чэс. Тогда в силу свойств 1' — 7' линейных операций (см. п. 2) д, ж дэ = (Х, ч- ) з) а + ()г, + )гз) Ь + (т, + тэ) с, ад, = (Ы,) а ж (а)г,) Ь + (св,) с. В силу единственности разложения по базису теорема доказана. Перейдем теперь к определению так называемых аффинных ) координат точки. Аффинньге координатьч в пространстве определяются заданием базиса а, Ь, с и некоторой точки О, называемой началом координат. Аффинными координатами любой точки М называются координатов вектора ОМ (относительно базиса а, Ь, с).

А Так как каждый вектор ОМ может быть, и притом единственным способом, разложен по базису а, Ъ, с, А' то каждой точке пространства М однозначно соответствует тройка аффинных координат )., р, ю и Разумеется, декартовы прямоугольные координаты являются частным случаем аффинных координат, соответствующим тройке взаимно ортогональных и единичных базисных векторов. Более подробно этот важный частный случай рассматривается в п.

9 настоящего параграфа. В заключение заметим, что свойства базиса и понятие аффинных координат на плоскости вполне аналогичны случаю пространства. 8. Проекция вектора иа ось и ее свойства. Прежде всего определим проекцию вектора а = АВ на произвольную ось и. Обозначим буквами А' и В' основания перпендикуляров, опущенных на ось и из точек А и В соответственно (рис. 2.12). Проекцией вектора а= АВ на ось иназываетсявеличина А'В' направленного отрезка А'В' оси и. Договоримся обозначать проекцию вектора а на ось и символом пр„а. Построение проекции вектора а = АВ на ось и иллюстрируется на рис.

2.12, где символом сх и !) обозначены две проецирующие плоскости ) Термин «аффиниый«происходит от латинского слова а)пи|в, что означает смежныи, или соседнии. Векторнля ллгезрл ~ГЛ 2 (т.е. плоскости, перпендикулярные оси и и проходящие через концы А и В вектора а = АВ ). Для дальнейшего нам понадобится понятие у гл а и а кл о и а вектора а= АВ коси и. Этотугол можетбытьопределенкакугол гр между двумя выходящими из произвольной' точки М лучами, один из которьгх имеет направление, совпадающее с направлением вектора а = АВ, а другой — направление, совпадающее с направлением оси и (рис.

2.12). Очевидно, на величину угла наклона вектора а к оси и не влияют выбор точки М выхода указанных выше лучей и замена оси и любой другой осью о, имеющей то же направление, что и ось и. Докажем следующее утверждение. Теорема 2.8. Проекция вектора а на ось и равна длине вектора а, умноженнои на косинус гр угла наклона вектора а к оси и. Д о к а з а т е л ь с т в о. Обозначим через о ось, проходящую через начало А вектора а и имеющую то же направление, что и ось и (рис. 2.12), и пусть С вЂ” проекция В на ось о. Тогда КВАС равен углу гр наклона вектора а = АВ к любой из осей и или о, причем точка С заведомо лежит в указанной на рис. 2.12 проецирующей плоскости )) (т.е.

в плоскости, перпендикулярной оси и и проходящей через точку В). Далее, можно утверждать, что А'В' = АС '), ибо оси и и о параллельны и одинаково направлены и отрезки этих осей, заключенные между параллельными плоскостями сг и )з, равны. Так как по определению пр„а =А'В', то мы приходим к равенству (2.21) пр, а =АС. Но величина АС представляет собой проекцию направленного отрезка АВ на ось о, которая (в силу п. 1 З 3 гл. 1) равна АС = ~ АВ ~ соз гр = ~а~ сов цз. Из сопоставления равенств (2.21) и (2.22) вытекает равенство пр, а = 1а! сакер. (2.23) Теорема доказана. О с н о в н ы е с в о й с т в а проекции вектора на ось заключаются в том, что линейные операции над векторами приводят к соответствующим линейным операциям над проекциями этих векторов (на произвольную ось). Именно справедливо следующее у т в е р ж д е н и е: При сложении двух векторов д, и «(в их проекции на произвольную ось и складываются.

При умножении вектора д, на любое ) Здесь под А'В' следует понимать величину направленного отрезка А'В' оси н, а под АС вЂ” величину направленного отрезка АС осн о. Вт линеиные Оперлции нлд векторлми число гх проекция этого вектора на произвольную ось и также умножается на число се. Доказательство этого утверждения отложим до и.

9. Описанные свойства проекции вектора на ось естественно назвать линейными свойствами. 9. Декартова прямоугольная система координат как частный случай аффинной системы координат. Как уже отмечалось выше, декартова прямоугольная система координат является частным случаем аффинной системы, отвечающей тройке взаимно ортогональных и единичных базисных векторов.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее