Главная » Просмотр файлов » Лосев А.К. Теория линейных электрических цепей (1987)

Лосев А.К. Теория линейных электрических цепей (1987) (1095414), страница 9

Файл №1095414 Лосев А.К. Теория линейных электрических цепей (1987) (Лосев А.К. Теория линейных электрических цепей (1987)) 9 страницаЛосев А.К. Теория линейных электрических цепей (1987) (1095414) страница 92018-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

При этом и! = исг, иг= — иоь На рис. 2.6, б, в показаны схематически магнитные потоки, образуемые током й при гг = О и током тг при 1! = О. Токи каждой катушки, образуют магнитные потоки, которые состоят из двух частей: Ф! ! = Ф!г+ Ф!рсс, Фгг = Фг! + Фарсе. (2.13) За счет магнитных потоков Ф!г и Фрь являющихся общими для обеих катушек, как раз и образуется связь между ними. Магнитные потоки Фг,, и Фгр„, не являющиеся общими для связанных катушек, называются потоками рассеяния.

Указанные магнитные потоки образуют потокосцепления, пропорциональные числу витков катушки, с которой они сцепляются. С другой стороны, эти потокосцепления пропорциональны вызвавшим их токам: 1 г! = птгФг! = ггг!, Ч !рас = тт!Фгрэс = гграстг, 1 !а=)нгФ!г=М!гт!, (2.14) Ч гг = тт/гФгг= е.гтг, Ч грэс= Л!гФграс= 1.грэс!э, Ч г! = )т!Фг! = Ма!!э. (2. 15) Здесь (.гр.„Ег„, — коэффициенты пропорциональности, которые называются иядуктивностями рассеяния, Коэффициенты пропорциональности М„и Мю равны друг другу в линейной системе и являются коэффициентом взаимоиндукции (езаимоиндуктивностью) М; М!г = Мг! =М.

(2.! 6) Действительно, магнитные потоки прямо пропорциональны магиитодвнжушей силе (числу ампер-витков) и обратно пропор- циональны магнитному сопротивленшо й'„магнитной цепи. Поэтому справедлив закон Ома для магнитной цепи: Ф~г = Д!п~l)~юг, Фм = згг1г!гсгг~ Поскольку для взаимных магнитных потоков магнитная цепь' является общей, для линейной магнитной цепи йюг =-Дьгь Поэтому из закона Ома для магнитной цепи и последних равенств (2.14), (2.15) следуют соотношения (2.16). Подставив значения магнитных потоков из соотношений (2.14), (2-.15) в формулы (2.13), с учетом равенств (2.16) найдем связь между параметрами элемента взаимоиндукции: Е! = Ешас+ М/и Ег = Еграс+ пй4, (2.1 7) где и = ~угяь (2.!.8) Параметр (2.18) называется коэффициентом трансформации.

Он является конструктивным параметром элемента вззямонндукции и не отражает трансформирующих свойств этого элемента, которые рассматриваются ниже. Значения полных магнитных потоков, сцепленных с каждой из катушек, зависят от направления отдельных потоков: Ф~ = Фп+-Фгь Фг = Фю ~ Ф1г Сложение или вычитание потоков зависит как от направления намотки катушек (обмоток), так и от направления токов в них. Если потоки складсчваются при втекании токов в некоторьче концы обмоток, то эти концы называют одноименными. Если же при этом потоки вычитаются, то соответствующие концы обмоток называют разноименкыми.

При необходимости одноименные концы катушек обозначают иа схемах каким-либо одинаковым значком, например точкой, как на рис. 2.6, а. Если токи, проходящие в заданном положительном направлении, втекают в одноименные концы обмоток, то такое нх включение называют согласным, и в равенствах (2.19) берут почожительный знак. Если же токи, проходящие в положите.гьном направлении, втекают в разноименные концьч обмоток, то такое их включение называют встречным, и в равенствах (2.19) берут отрицательный знак. Например, на рис. 2.6, а показано согласное включение катушек.. Полным магнитным потокам (2.19) соответствуют потокосцепления Ч'~ = М~Ф~ = Ч'1~ -!- Ч' ь 1Рг = МгФг = Ч"гг ~ Ч" ~г.

(2.20) Этими потокосцеплениямн определяются э. д. с. индукции еы и ест, которые уравновешивают напряжения на индуктивностях Ен Ег. — еы(!) = иы(!) = — — '~, — есг(!) = исг(!) = — ' — ' —. (2.21) ш 35 Для линейного элемента взаимоиндукции ((.~ =сопи!, !х= = сопз1, М =- сопз1) из соотношений (2.21), (2.20) и (2.14), (2.!5) находим уравнения связи между напряжениями и токами в элементе: иы(/) = 1., — ' — -~- М вЂ” ' — ', исз(/) = Ь вЂ” () т М вЂ”,ч~ ! . (2.22) ш ь/ ' ' ш ти Эти уравнения свидетельствуют, в частности, о взаимосвязи между напряжениями н токами на входе и выходе элемента взаимоиндукции. Будучи взаимосвязанными, напряжения и|= = им и и.= — иы в общем случае отличаются друг от друга.

Изменение напряжений при прохождении сигнала со входа на выход элемента-четырехполюсники или в обратном направлении называют трансформацией напряжений (от лат. 1гапз(огшо— преобразую). Аналогично, происходящее при этом изменение токов называют их. трансформацией. Характер и степень трансформации напряжений и токов в элементе взаимоиндукции зависят не только от параметров этого элемента, но и от многих других факторов. В частности, из уравнений (2.22) видно, что значения напряжений в линейном элементе взаимоиндукции, а следовательно, и степень их трансформации зависят от скорости изменения токов, т. е. от параметров сигнала.

Нелинейность элемента взаимоиндукции может проявляться, как отмечалось, в различии параметров Мм и Мм. Однако и при соблюдении равенств (2.16) элемент взаимоиндукции является нелинейным, если М =М(/ь !г), так же как и Ь =/1(!~), 1 2 =1 зЯ. Если же /.~ = / ~(/), 1.р= ьз(/), М =М(/), то элемент взаимоиндукции является параметрическим элементом.

Для нелинейных и параметрических элементов взаимоиндукции уравнения (2.22) являются недействительными. Для таких элементов связь между напряжениями н токами устанавливается из общих соотношений (2.21) с учетом непостоянства параметров 1 ь I 2, М (или Мнь Мм). 5. Релиз ьвные сопротивления и проводимости. Реактивные элементы, как и диссипативный элемент, оказывают противодействие проходящему через них току, т.

е. обладают некоторым сопротивлением или проводимостью. Однако природа этого сопротивления (проводимости) иная. В отличие от диссипативного сопротивления (диссипативной проводимости) его (ее) называют реактивным сопротивлением (реактивной проводимостью). Реактивное сопротивление емкости (емкостное сопротивление) обусловлено противодействием (отталкиванием), которое испытывают притекающие заряды со стороны одноименных зарядов, скопившихся в элементе.

Из первой формулы (2.б) видно, что с ростом С и ~ — ~ ток 1 увеличивается по абсолютному оь(0 Й значению. Это означает, что емкостиое сопротивление уменьшается, а емкостная проводимость увеличивается с ростом емкости зь и скорости изменения напряжения. Такое, свойство емкостных сопротивлений и проводимостей обусловлено тем, что при заданном напряжении и и оговоренных условиях через емкостный элемент должно пройти больше зарядов (2.5) в единицу времени. Реактивное сопротивление индуктивности (индуктивное сопротивление) обусловлено противодействием э.

д, с. самоиндукцни ес изменению тока в элементе. Чем быстрее изменяется ток Г и чем больше индуктивность Е, тем больше по абсолютному значению получается эта противодействующая э. д. с. при заданном токе !(!), как это видно из формул (2.9), (2.10). Другими словами, при оговоренных условиях индуктивное сопротивление возрастает, а индуктивная проводимость уменьшается. Это приводит к соответствующему увеличению падения напряжения на индуктивном элементе (по абсолютному значению), как следует из первой формулы (2.! !).

Реактивное сопротивление взаимоиндуктивности, называемое сопротивлением взаимоиндукции, имеет ту же физическую природу, что и сопротивление индуктивности. Г!ри этом необходимо учитывать, что согласно соотношениям (2.21) элемент взаимо- индукции оказывает сопротивление как входному, так и выходному току. Кроме того, особенностью этого реактивного сопротивления является противодействие току как вследствие его собственного изменения, так и вследствие изменения тока другой катушки.

Изменение этого другого тока и создает через взаимное поле противодействующую э. д. с. взаимонндукции. 6. Идеальный трансформатор. Как н элемент взаимоиндукции, идеальный трансформирующий элемент, или идеальный трансформатор (ИТ), является четырехполюсником. Его обозначение показано на рис. 2.7, где и — параметр элемента, называемый коэффициентом трансформации. В отличие от элемента взаимоиндукйии идеальный трансформатор не накапливает электрическую энергию, а передает ее без потерь от входных к выходным зажимам, трансформируя напряжение в и раз: и7 = пиь (2.23) Энергия на входе и выходе идеального трансформатора получается одинаковой в любой момент времени, если равны соответствующие мгновенные мощности: р(г)=-.

и~(!)с',(!)=игЯЬ(!). (2.24) Из соотношений (2.23), (2.24) еле- с, с' дует, что идеальный трансформатор трап- 7 — ~ Р" -з сформирует не только напряжения, но и токи: и т !г = Г~/и. (2.25) ! г' ДлЯ УстРойств свЯзи сУщественным Рис. а7. Обозначение иле свойством трансформатора является его альиьго трансформатора 37 г, г7 =— 1 г С, г, а! 'г г сг т! г, 1 е) 'тг го ! Рис. 2.8. Трансформации элементов идеальным трансформатором способность изменять (т рансформировать) параметры элементов.

Пусть на выходе идеального трансформатора подключен один, из элементов Ие = 1/6ь Ст или 7 е. Это показано на левых схемах рис. 2.8, а — в, где для идеального трансформатора использовано общее обозначение четырехполюсника (см. рис. 2.1, б). Для выходных напряжений и токов указанных схем формулы (2.1), (2,8), (2.11) принимают соответственно вид: ив=%!в= — ин ге=Се, ие=г,е —. (2.26) ! .. Ен! ьч! б ' ег' е!' Подставив сюда равенства (2.23), (2.25), получаем соотношения между напряжениями и токами на входе идеального трансформатора: е! ° ! ! .

ен! 1т си! пи! = — т! = — т!, — 1! = пСг —, пи! = — —. а лбе ' и сп и !!г Эти соотношения можно переписать в форме равенств (2.26): ! .. он! о!! и! = И!г! = — г!, г! = С!, и! = Е! —, б ' е!.' ш' где )т'! = Ке/и',.6! = и'6т, С! = и'Ст, Е! = Ее/и'. (2.27) Таким образом, идеальный трансформатор изменяет, или трансформирует, параметры пассивных элементов в !/и' Нли и' раз в соответствии с равенствами (2.27).

Это означает, что схемы, показанные на рис. 2.8 слева н справа, являются взаимозаменяемыми. 2 с, 7! ~г, , <, "ф и ~ я,=г,~пг 1 с,=п'с Взаимозаменленсче 'схемы (цепи) называют эквивалентными. Таким образом, рассмотренные цепи с параметрами (2.27) являются эквивалентными двухполюсниками, при подключении которых к зажимам 1, 1' напряжение и и ток 1 сохраняют свои значения. Существование этих эквивалентных схем означает, что подобно двухполюснику рассмотренный четырехполюсник обладает со стороны входных зажимов 1, !' некоторым диссипативным нли реактивным сопротивлением (проводимостью). Сопротивление (проводимость) четырехполюсника со стороны входнскх зажимов называют вго входным сопротивлением (входной проводимостью).

Таким образом, идеальный трансформатор является также трансформатором диссипативных и реактивных сопротивлений и проводимостей. Согласно формулам (2.27) идеальный трансформатор уменьшает сопротивление н увеличивает проводимость в и' раз. При передаче сигнала справа налево происходит обратная трансформация сопротивлений и проводимостей, поскольку параметры элементов (сь бь Сь (.ь подключенных к зажимам 1,! ', преобразуются в параметры Рт, бт, Сж (.т в соответствии с формулами (2.27).

7. Классификация цепей по видам элементов. Классификация электрических цепей возможна в соответствии с названиями рассмотренных элементов цепи. Если цепь или часть цепи содержит только пассивные элементы, то ее называют пассивной цепью. Если пассивная цепь содержит хотя бы один диссипативиый элемент, то ее называют диссипативной цепью или цепью с потерями. В противном случае цепь называется реактивной цепью или цепью без потерь.

Характеристики

Тип файла
DJVU-файл
Размер
8,8 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее