Дифференциальное исчисление функции одной переменной (1092157), страница 3
Текст из файла (страница 3)
Если на промежутке (a;b) график функции f(x) расположен ниже любой своей касательной, проведенной в точке этого промежутка, то функция называется выпуклой на этом промежутке (иногда говорят "выпуклой вверх").
Точка x0 называется точкой перегиба функции f(x), если в этой точке функция имеет производную и существуют два промежутка: (a;x0) и (x0;b), на одном из которых функция выпукла, а на другом вогнута.
Будем называть функцию возрастающей в точке x0, если она непрерывна в этой точке и возрастает в некоторой ее окрестности. Подобным образом можно определить функцию, убывающую в точке.
Приведем без доказательства важную для исследования функций теорему.
Если f(x) > 0 на промежутке (a;b), то на этом промежутке функция f(x) вогнута. Если f(x) < 0 на промежутке (a;b), то на этом промежутке функция f(x) выпукла.
Из положительности второй производной функции на промежутке следует возрастание первой производной на этом промежутке, а это, как показано на рисунке 5, – признак вогнутой функции. Аналогичным образом иллюстрируется второе утверждение теоремы.
Если x0 – точка перегиба функции f(x), то f(x0) = 0.
Приведем другую формулировку достаточных условий экстремума функции.
Если в точке x0 выполняются условия:
1) f(x0) = 0; f(x0) < 0, тогда x0 – точка максимума;
2) f(x0) = 0; f(x0) > 0, тогда x0 – точка минимума;
3) f(x0) = 0; f(x0) = 0, тогда вопрос о поведении функции в точке остается открытым. Здесь может быть экстремум, например в точке x0 = 0 у функции y = x4, но может его не быть, например в точке x0 = 0 у функции y = x5. В этом случае для решения вопроса о наличии экстремума в стационарной точке можно использовать достаточные условия экстремума, приведенные выше.
Рассмотрим пример из микроэкономики.
В количественной теории полезности предполагается, что потребитель может дать количественную оценку (в некоторых единицах измерения) полезности любого количества потребляемого им товара.
Это означает существование функции полезности TU аргумента Q –количества купленного товара. Введём понятие предельной полезности, как добавочной полезности, прибавляемой каждой последней порцией товара. Далее построим двумерную систему координат, откладывая по горизонтальной оси
Это означает, что предельная полезность равна производной функции полезности TU(Q). Закон убывающей предельной полезности сводится к уменьшению этой производной с ростом величины Q. Отсюда следует выпуклость графика функции TU(Q). Понятие функции полезности и представление предельной полезности в виде производной этой функции широко используется в математической экономике.
55